Kafka producer异步发送在某些情况会阻塞主线程,使用时候慎重
最近发现一个Kafka producer异步发送在某些情况会阻塞主线程,后来在排查解决问题过程中发现这可以算是Kafka的一个说明不恰当的地方。
问题说明
在很多场景下我们会使用异步方式来发送Kafka的消息,会使用KafkaProducer中的以下方法:
public Future<RecordMetadata> send(ProducerRecord<K, V> record, Callback callback) {}
根据文档的说明它是一个异步的发送方法,按道理不管如何它都不应该阻塞主线程,但实际中某些情况下会出现阻塞线程,比如broker未正确运行,topic未创建等情况,有些时候我们不需要对发送的结果做保证,但是如果出现阻塞的话,会影响其他业务逻辑。
问题出现点
从KafkaProducer send这个方法声明上看并没有什么问题,那么我们来看一下她的具体实现:
public Future<RecordMetadata> send(ProducerRecord<K, V> record, Callback callback) { // intercept the record, which can be potentially modified; this method does not throw exceptions ProducerRecord<K, V> interceptedRecord = this.interceptors.onSend(record); return doSend(interceptedRecord, callback); } /** * Implementation of asynchronously send a record to a topic. */ private Future<RecordMetadata> doSend(ProducerRecord<K, V> record, Callback callback) { TopicPartition tp = null; try { throwIfProducerClosed(); // first make sure the metadata for the topic is available ClusterAndWaitTime clusterAndWaitTime; try { clusterAndWaitTime = waitOnMetadata(record.topic(), record.partition(), maxBlockTimeMs); //出现问题的地方 } catch (KafkaException e) { if (metadata.isClosed()) throw new KafkaException("Producer closed while send in progress", e); throw e; } ... } catch (ApiException e) { ... } } private ClusterAndWaitTime waitOnMetadata(String topic, Integer partition, long maxWaitMs) throws InterruptedException { // add topic to metadata topic list if it is not there already and reset expiry Cluster cluster = metadata.fetch(); if (cluster.invalidTopics().contains(topic)) throw new InvalidTopicException(topic); metadata.add(topic); Integer partitionsCount = cluster.partitionCountForTopic(topic); // Return cached metadata if we have it, and if the record's partition is either undefined // or within the known partition range if (partitionsCount != null && (partition == null || partition < partitionsCount)) return new ClusterAndWaitTime(cluster, 0); long begin = time.milliseconds(); long remainingWaitMs = maxWaitMs; long elapsed; //一直获取topic的元数据信息,直到获取成功,若获取时间超过maxWaitMs,则抛出异常 do { if (partition != null) { log.trace("Requesting metadata update for partition {} of topic {}.", partition, topic); } else { log.trace("Requesting metadata update for topic {}.", topic); } metadata.add(topic); int version = metadata.requestUpdate(); sender.wakeup(); try { metadata.awaitUpdate(version, remainingWaitMs); } catch (TimeoutException ex) { // Rethrow with original maxWaitMs to prevent logging exception with remainingWaitMs throw new TimeoutException( String.format("Topic %s not present in metadata after %d ms.", topic, maxWaitMs)); } cluster = metadata.fetch(); elapsed = time.milliseconds() - begin; if (elapsed >= maxWaitMs) { //判断执行时间是否大于maxWaitMs throw new TimeoutException(partitionsCount == null ? String.format("Topic %s not present in metadata after %d ms.", topic, maxWaitMs) : String.format("Partition %d of topic %s with partition count %d is not present in metadata after %d ms.", partition, topic, partitionsCount, maxWaitMs)); } metadata.maybeThrowException(); remainingWaitMs = maxWaitMs - elapsed; partitionsCount = cluster.partitionCountForTopic(topic); } while (partitionsCount == null || (partition != null && partition >= partitionsCount)); return new ClusterAndWaitTime(cluster, elapsed); }
从它的实现我们可以看出,会导致线程阻塞的原因在于以下这个逻辑:
private ClusterAndWaitTime waitOnMetadata(String topic, Integer partition, long maxWaitMs) throws InterruptedException
通过KafkaProducer 执行send的过程中需要先获取Metadata,而这是一个不断循环的操作,直到获取成功,或者抛出异常。
其实Kafka本意这么实现并没有问题,因为你要发送消息的前提就是能获取到border和topic的信息,问题在于这个send对外暴露的是Future的方法,但是内部实现却是有阻塞的,那么在有些时候没有考虑到这种情况,一旦出现border或者topic异常,将会阻塞系统线程,导致系统响应变慢,直到奔溃。
问题解决
其实解决这个问题很简单,就是单独创建几个线程用于消息发送,这样即使遇到意外情况,也只会阻塞几个线程,不会引起系统线程大面积阻塞,不可用,具体实现:
import java.util.concurrent.Callable import java.util.concurrent.ExecutorService import java.util.concurrent.Executors import org.apache.kafka.clients.producer.{Callback, KafkaProducer, ProducerRecord, RecordMetadata} class ProducerF[K,V](kafkaProducer: KafkaProducer[K,V]) { val executor: ExecutorService = Executors.newScheduledThreadPool(1) def sendAsync(producerRecord: ProducerRecord[K,V], callback: Callback) = { executor.submit(new Callable[RecordMetadata]() { def call = kafkaProducer.send(producerRecord, callback).get() }) } }
欢迎关注微信公众号:大数据从业者