Flink中对窗口的支持
引:https://www.jianshu.com/p/e33a8b498ba4
1:flink支持两种划分窗口的方式(time和count) 如果根据时间划分窗口,那么它就是一个time-window 如果根据数据划分窗口,那么它就是一个count-window
2:flink支持窗口的两个重要属性(size和interval)
如果size=interval,那么就会形成tumbling-window(无重叠数据)
如果size>interval,那么就会形成sliding-window(有重叠数据)
如果size<interval,那么这种窗口将会丢失数据。比如每5秒钟,统计过去3秒的通过路口汽车的数据,将会漏掉2秒钟的数据。
通过组合可以得出四种基本窗口:
time-tumbling-window 无重叠数据的时间窗口,设置方式举例:timeWindow(Time.seconds(5))
time-sliding-window 有重叠数据的时间窗口,设置方式举例:timeWindow(Time.seconds(5), Time.seconds(3))
count-tumbling-window无重叠数据的数量窗口,设置方式举例:countWindow(5)
count-sliding-window 有重叠数据的数量窗口,设置方式举例:countWindow(5,3)
flink支持在stream上的通过key去区分多个窗口
Tumbling Time Window
假如我们需要统计每一分钟中用户购买的商品的总数, 需要将用户的行为事件按每一分钟进行切分, 这种切分被成为翻滚时间窗口(Tumbling Time Window)。 翻滚窗口能将数据流切分成不重叠的窗口, 每一个事件只能属于一个窗口。 // 用户id和购买数量 stream val counts: DataStream[(Int, Int)] = ... val tumblingCnts: DataStream[(Int, Int)] = counts // 用userId分组 .keyBy(0) // 1分钟的翻滚窗口宽度 .timeWindow(Time.minutes(1)) // 计算购买数量 .sum(1)
Sliding Time Window
我们可以每30秒计算一次最近一分钟用户购买的商品总数。 这种窗口我们称为滑动时间窗口(Sliding Time Window)。 在滑窗中,一个元素可以对应多个窗口。通过使用 DataStream API,我们可以这样实现: val slidingCnts: DataStream[(Int, Int)] = buyCnts .keyBy(0) .timeWindow(Time.minutes(1), Time.seconds(30)) .sum(1)
Tumbling Count Window
当我们想要每100个用户购买行为事件统计购买总数,那么每当窗口中填满100个元素了,就会对窗口进行计算,这种窗口我们称之为翻滚计数窗口(Tumbling Count Window),上图所示窗口大小为3个。通过使用 DataStream API,我们可以这样实现
// Stream of (userId, buyCnts) val buyCnts: DataStream[(Int, Int)] = ... val tumblingCnts: DataStream[(Int, Int)] = buyCnts // key stream by sensorId .keyBy(0) // tumbling count window of 100 elements size .countWindow(100) // compute the buyCnt sum .sum(1)
Session Window
在这种用户交互事件流中,我们首先想到的是将事件聚合到会话窗口中(一段用户持续活跃的周期),由非活跃的间隙分隔开。如上图所示,就是需要计算每个用户在活跃期间总共购买的商品数量,如果用户30秒没有活动则视为会话断开(假设raw data stream是单个用户的购买行为流)。Session Window 的示例代码如下
// Stream of (userId, buyCnts) val buyCnts: DataStream[(Int, Int)] = ... val sessionCnts: DataStream[(Int, Int)] = vehicleCnts .keyBy(0) // session window based on a 30 seconds session gap interval .window(ProcessingTimeSessionWindows.withGap(Time.seconds(30))) .sum(1)
一般而言,window 是在无限的流上定义了一个有限的元素集合。这个集合可以是基于时间的,元素个数的,时间和个数结合的,会话间隙的,或者是自定义的。Flink 的 DataStream API 提供了简洁的算子来满足常用的窗口操作,同时提供了通用的窗口机制来允许用户自己定义窗口分配逻辑