python Pandas API文档

关键缩写和包导入 
缩写:

df:任意的Pandas DataFrame对象 
s:任意的Pandas Series对象 
导入包:

import pandas as pd 
import numpy as np

导入数据 
pd.read_csv(filename):从CSV文件导入数据 
pd.read_table(filename):从限定分隔符的文本文件导入数据 
pd.read_excel(filename):从Excel文件导入数据 
pd.read_sql(query, connection_object):从SQL表/库导入数据 
pd.read_json(json_string):从JSON格式的字符串导入数据 
pd.read_html(url):解析URL、字符串或者HTML文件,抽取其中的tables表格 
pd.read_clipboard():从你的粘贴板获取内容,并传给read_table() 
pd.DataFrame(dict):从字典对象导入数据,Key是列名,Value是数据

导出数据 
df.to_csv(filename):导出数据到CSV文件 
df.to_excel(filename):导出数据到Excel文件 
df.to_sql(table_name, connection_object):导出数据到SQL表 
df.to_json(filename):以Json格式导出数据到文本文件

创建测试对象 
pd.DataFrame(np.random.rand(20,5)):创建20行5列的随机数组成的DataFrame对象 
pd.Series(my_list):从可迭代对象my_list创建一个Series对象 
df.index = pd.date_range(‘1900/1/30’, periods=df.shape[0]):增加一个日期索引

查看、检查数据 
df.head(n):查看DataFrame对象的前n行 
df.tail(n):查看DataFrame对象的最后n行 
df.shape():查看行数和列数 
df.info():查看索引、数据类型和内存信息 
df.describe():查看数值型列的汇总统计 
s.value_counts(dropna=False):查看Series对象的唯一值和计数 
df.apply(pd.Series.value_counts):查看DataFrame对象中每一列的唯一值和计数

数据选取 
df[col]:根据列名,并以Series的形式返回列 
df[[col1, col2]]:以DataFrame形式返回多列 
s.iloc[0]:按位置选取数据 
s.loc[‘index_one’]:按索引选取数据 
df.iloc[0,:]:返回第一行 
df.iloc[0,0]:返回第一列的第一个元素

数据清理 
df.columns = [‘a’,’b’,’c’]:重命名列名 
pd.isnull():检查DataFrame对象中的空值,并返回一个Boolean数组 
pd.notnull():检查DataFrame对象中的非空值,并返回一个Boolean数组 
df.dropna():删除所有包含空值的行 
df.dropna(axis=1):删除所有包含空值的列 
df.dropna(axis=1,thresh=n):删除所有小于n个非空值的行 
df.duplicated():判断重复数据记录 
df.drop_duplicates():删除数据记录,可指定特定列或全部 
df.fillna(x):用x替换DataFrame对象中所有的空值 
s.astype(float):将Series中的数据类型更改为float类型 
s.replace(1,’one’):用‘one’代替所有等于1的值 
s.replace([1,3],[‘one’,’three’]):用’one’代替1,用’three’代替3 
df.rename(columns=lambda x: x + 1):批量更改列名 
df.rename(columns={‘old_name’: ‘new_ name’}):选择性更改列名 
df.set_index(‘column_one’):更改索引列 
df.rename(index=lambda x: x + 1):批量重命名索引

数据处理:Filter、Sort和GroupBy 
df[df[col] > 0.5]:选择col列的值大于0.5的行 
df.sort_values(col1):按照列col1排序数据,默认升序排列 
df.sort_values(col2, ascending=False):按照列col1降序排列数据 
df.sort_values([col1,col2], ascending=[True,False]):先按列col1升序排列,后按col2降序排列数据 
df.groupby(col):返回一个按列col进行分组的Groupby对象 
df.groupby([col1,col2]):返回一个按多列进行分组的Groupby对象 
df.groupby(col1)[col2]:返回按列col1进行分组后,列col2的均值 
df.pivot_table(index=col1, values=[col2,col3], aggfunc=max):创建一个按列col1进行分组,并计算col2和col3的最大值的数据透视表 
df.groupby(col1).agg(np.mean):返回按列col1分组的所有列的均值 
data.apply(np.mean):对DataFrame中的每一列应用函数np.mean 
data.apply(np.max,axis=1):对DataFrame中的每一行应用函数np.max

数据合并 
df1.append(df2):将df2中的行添加到df1的尾部 
df.concat([df1, df2],axis=1):将df2中的列添加到df1的尾部 
df1.join(df2,on=col1,how=’inner’):对df1的列和df2的列执行SQL形式的join

数据统计 
df.describe():查看数据值列的汇总统计 
df.mean():返回所有列的均值 
df.corr():返回列与列之间的相关系数 
df.count():返回每一列中的非空值的个数 
df.max():返回每一列的最大值 
df.min():返回每一列的最小值 
df.median():返回每一列的中位数 
df.std():返回每一列的标准差

posted @ 2019-07-25 07:32  奋斗无止境坚持不懈怠  阅读(2057)  评论(0编辑  收藏  举报