leetcode -- Search for a Range (TODO)

Given a sorted array of integers, find the starting and ending position of a given target value.

Your algorithm's runtime complexity must be in the order of O(log n).

If the target is not found in the array, return [-1, -1].

For example,
Given [5, 7, 7, 8, 8, 10] and target value 8,
return [3, 4].

思路:

使用二分搜索找到target的idx,然后查看该idx的左右确定范围。

算法复杂度:

平均情况下是O(lgn);

最坏情况下数组中所有元素都相同O(n);

 1 public class Solution {
 2     public int[] searchRange(int[] A, int target) {
 3         // Start typing your Java solution below
 4         // DO NOT write main() function
 5         int idx = binarySearch(A, target);
 6         int len = A.length;
 7         int[] results = null;
 8         if(idx == -1){
 9             results = new int[]{-1, -1};
10         } else{
11             int l = idx;
12             int r = idx;
13             while(l >= 0 && A[l] == target){
14                 l--;
15             }
16             l++;
17             
18             while(r < len && A[r] == target){
19                 r++;
20             }
21             r--;
22             results = new int[]{l, r};
23         }
24         return results;
25     }
26     
27     public int binarySearch(int[] A, int target){
28         int len = A.length;
29         int l = 0, r = len - 1;
30         while(l <= r){
31             int mid = (l + r) / 2;
32             if(target == A[mid])
33                 return mid;
34             
35             if(target > A[mid]){
36                 l = mid + 1;
37             } else {
38                 r = mid - 1;
39             }
40         }
41         
42         return -1;
43     }
44 }

 

google了下,要保证最坏情况下时间复杂度为O(lgn):进行两次二分搜索确定左右边界

 

posted @ 2013-08-01 21:06  feiling  阅读(348)  评论(0编辑  收藏  举报