leetcode -- Median of Two Sorted Arrays
There are two sorted arrays A and B of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).
比较容易想到的做法是O(n),merge两个数组,然后求中值。
1 public class Solution { 2 public double findMedianSortedArrays(int A[], int B[]) { 3 // Start typing your Java solution below 4 // DO NOT write main() function 5 double result = 0; 6 int lengthA = A.length; 7 int lengthB = B.length; 8 9 int[] combinedArray = new int[lengthA + lengthB]; 10 for(int i = 0; i < lengthA; i++){ 11 combinedArray[i] = A[i]; 12 } 13 for(int j = 0; j < lengthB; j++){ 14 combinedArray[lengthA + j] = B[j]; 15 } 16 17 Arrays.sort(combinedArray); 18 19 if(((lengthA + lengthB) % 2) !=0){ 20 result = combinedArray[(lengthA + lengthB) / 2]; 21 22 } else { 23 result = (combinedArray[(lengthA + lengthB) / 2] + combinedArray[(lengthA + lengthB) / 2 - 1]) / 2.0; 24 25 } 26 return result; 27 } 28 }
O(log(m+n))第一映像是使用二分搜索
1 public class Solution { 2 public double findMedianSortedArrays(int A[], int B[]) { 3 // Start typing your Java solution below 4 // DO NOT write main() function 5 int aLen = A.length; 6 int bLen = B.length; 7 if((aLen + bLen) % 2 ==0){ 8 return (getKthElement(A, 0, aLen - 1, B, 0, bLen - 1, (aLen + bLen) / 2) + getKthElement(A, 0, aLen - 1, B, 0, bLen - 1, (aLen + bLen) / 2 + 1)) / 2.0; 9 } else { 10 return getKthElement(A, 0, aLen - 1, B, 0, bLen - 1, (aLen + bLen) / 2 + 1); 11 } 12 } 13 14 public int getKthElement(int A[], int aBeg, int aEnd, int B[], int bBeg, int bEnd, int k){ 15 if(aBeg > aEnd){ 16 return B[bBeg + (k - 1)]; 17 } 18 if(bBeg > bEnd){ 19 return A[aBeg + (k - 1)]; 20 } 21 22 int aMid = (aBeg + aEnd) >> 1; 23 int bMid = (bBeg + bEnd) >> 1; 24 int len = aMid - aBeg + bMid - bBeg + 2; 25 26 if(len > k){ 27 if(A[aMid] < B[bMid]){ 28 return getKthElement(A, aBeg, aEnd, B, bBeg, bMid - 1, k); 29 } else { 30 return getKthElement(A, aBeg, aMid - 1, B, bBeg, bEnd, k); 31 } 32 } else { 33 if(A[aMid] < B[bMid]){ 34 return getKthElement(A, aMid + 1, aEnd, B, bBeg, bEnd, k - (aMid - aBeg + 1)); 35 } else { 36 return getKthElement(A, aBeg, aEnd, B, bMid + 1, bEnd, k - (bMid - bBeg + 1)); 37 } 38 } 39 } 40 }
(a + b) >> 1 + 1
>> 的优先级比 + 要低,上述等价于(a + b) >> (1 + 1)
ref http://www.cnblogs.com/longdouhzt/archive/2013/03/04/2943572.html