大数据学习——spark-steaming学习

 

官网http://spark.apache.org/docs/latest/streaming-programming-guide.html

1.1.  用Spark Streaming实现实时WordCount

1.安装并启动生成者

首先在一台Linux(ip:192.168.10.101)上用YUM安装nc工具

yum install -y nc

 

启动一个服务端并监听9999端口

nc -lk 9999

 

 

2.编写Spark Streaming程序

package org.apache.spark

import org.apache.spark.SparkConf
import org.apache.spark.streaming.StreamingContext
import org.apache.spark.streaming.Seconds

object TCPWordCount {
  def main(args: Array[String]) {
    //setMaster("local[2]")本地执行2个线程,一个用来接收消息,一个用来计算
    val conf = new SparkConf().setMaster("local[2]").setAppName("TCPWordCount")
    //创建spark的streaming,传入间隔多长时间处理一次,间隔在5秒左右,否则打印控制台信息会被冲掉
    val scc = new StreamingContext(conf, Seconds(5))
    //读取数据的地址:从某个ip和端口收集数据
    val lines = scc.socketTextStream("192.168.74.100", 9999) //进行rdd处理 val results = lines.flatMap(_.split(" ")).map((_, 1)).reduceByKey(_ + _) //将结果打印控制台  results.print() //启动spark streaming  scc.start() //等待终止  scc.awaitTermination() } }

 

3.启动Spark Streaming程序:由于使用的是本地模式"local[2]"所以可以直接在本地运行该程序

注意:要指定并行度,如在本地运行设置setMaster("local[2]"),相当于启动两个线程,一个给receiver,一个给computer。如果是在集群中运行,必须要求集群中可用core数大于1

4.在Linux端命令行中输入单词

 

5.在IDEA控制台中查看结果

 

问题:结果每次在Linux段输入的单词次数都被正确的统计出来,但是结果不能累加!如果需要累加需要使用updateStateByKey(func)来更新状态,下面给出一个例子:

package org.apache.spark

import org.apache.spark.HashPartitioner
import org.apache.spark.SparkConf
import org.apache.spark.streaming.Seconds
import org.apache.spark.streaming.StreamingContext

object TCPWordCountUpdate {
  /**
    * String:某个单词
    * Seq:[1,1,1,1,1,1],当前批次出现的次数的序列
    * Option:历史的结果的sum
    */

  val updateFunction = (iter: Iterator[(String, Seq[Int], Option[Int])]) => {
    iter.map(t => (t._1, t._2.sum + t._3.getOrElse(0)))
    //iter.map{case(x,y,z)=>(x,y.sum+z.getOrElse(0))}
  }

  def updateFunction2(newValues: Seq[Int], runningCount: Option[Int]): Option[Int] = {
    Some(newValues.sum + runningCount.getOrElse(0))
  }


  def main(args: Array[String]) {
    //setMaster("local[2]")本地执行2个线程,一个用来接收消息,一个用来计算
    val conf = new SparkConf().setMaster("local[2]").setAppName("TCPWordCount")
    //创建spark的streaming,传入间隔多长时间处理一次,间隔在5秒左右,否则打印控制台信息会被冲掉
    val scc = new StreamingContext(conf, Seconds(5))
    scc.checkpoint("./")//读取数据的地址:从某个ip和端口收集数据
    val lines = scc.socketTextStream("192.168.74.100", 9999)
    //进行rdd处理
    /**
      * updateStateByKey()更新数据
      * 1、更新数据的具体实现函数
      * 2、分区信息
      * 3、boolean值
      */
    //val results = lines.flatMap(_.split(" ")).map((_,1)).updateStateByKey(updateFunction2 _)
    val results = lines.flatMap(_.split(" ")).map((_, 1)).updateStateByKey(updateFunction, new HashPartitioner(scc.sparkContext.defaultParallelism), true)
    //将结果打印控制台
    results.print()
    //启动spark streaming
    scc.start()
    //等待终止
    scc.awaitTermination()
  }
}

 

1.1.  使用reduceByKeyAndWindow计算每分钟数据

import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
import org.apache.spark.streaming.{Seconds, StreamingContext}

object SparkSqlTest {
  def main(args: Array[String]) {
    LoggerLevels.setStreamingLogLevels()
    val conf = new SparkConf().setAppName("sparksql").setMaster("local[2]")
    val ssc = new StreamingContext(conf,Seconds(5))
    ssc.checkpoint("./")
    val textStream: ReceiverInputDStream[String] = ssc.socketTextStream("192.168.74.100",9999)
    val result: DStream[(String, Int)] = textStream.flatMap(_.split(" ")).map((_,1)).reduceByKeyAndWindow((a:Int,b:Int) => (a + b),Seconds(5),Seconds(5))
    result.print()
    ssc.start()
    ssc.awaitTermination()
  }
}

1.1.  Spark Streaming整合Kafka完成网站点击流实时统计

 

 

1.安装并配置zk

2.安装并配置Kafka

3.启动zk

4.启动Kafka

5.创建topic

bin/kafka-topics.sh --create --zookeeper node1.itcast.cn:2181,node2.itcast.cn:2181 \

--replication-factor 3 --partitions 3 --topic urlcount

6.编写Spark Streaming应用程序

package cn.itcast.spark.streaming

package cn.itcast.spark

import org.apache.spark.{HashPartitioner, SparkConf}
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming.{Seconds, StreamingContext}

object UrlCount {
  val updateFunc = (iterator: Iterator[(String, Seq[Int], Option[Int])]) => {
    iterator.flatMap{case(x,y,z)=> Some(y.sum + z.getOrElse(0)).map(n=>(x, n))}
  }

  def main(args: Array[String]) {
    //接收命令行中的参数
   // val Array(zkQuorum, groupId, topics, numThreads, hdfs) = args
val Array(zkQuorum, groupId, topics, numThreads) = Array[String]("master1ha:2181,master2:2181,master2ha:2181","g1","wangsf-test","2")
    //创建SparkConf并设置AppName
    val conf = new SparkConf().setAppName("UrlCount")
    //创建StreamingContext
    val ssc = new StreamingContext(conf, Seconds(2))
    //设置检查点
    ssc.checkpoint(hdfs)
    //设置topic信息
    val topicMap = topics.split(",").map((_, numThreads.toInt)).toMap
    //重Kafka中拉取数据创建DStream
    val lines = KafkaUtils.createStream(ssc, zkQuorum ,groupId, topicMap, StorageLevel.MEMORY_AND_DISK).map(_._2)
    //切分数据,截取用户点击的url
    val urls = lines.map(x=>(x.split(" ")(6), 1))
    //统计URL点击量
    val result = urls.updateStateByKey(updateFunc, new HashPartitioner(ssc.sparkContext.defaultParallelism), true)
    //将结果打印到控制台
    result.print()
    ssc.start()
    ssc.awaitTermination()
  }
}

生产数据测试:

kafka-console-producer.sh --broker-list h2slave1:9092 --topic wangsf-test

 

posted on 2019-06-13 16:34  o_0的园子  阅读(504)  评论(0编辑  收藏  举报