强化学习学习笔记:Policy Gradient Methods
一.学习目标
了解基于价值和基于策略的强化学习之间的区别
了解REINFORCE算法(蒙特卡洛策略梯度)
了解Actor-Critic(AC)算法
了解优势函数
了解确定性策略梯度(可选)
了解如何使用异步Actor-Critic算法和神经网络扩展Policy Gradient方法(可选)
1.了解基于价值和基于策略的强化学习之间的区别
基于概率是强化学习中最直接的一种, 他能通过感官分析所处的环境, 直接输出下一步要采取的各种动作的概率, 然后根据概率采取行动, 所以每种动作都有可能被选中, 只是可能性不同. 而基于价值的方法输出则是所有动作的价值, 我们会根据最高价值来选着动作, 相比基于概率的方法, 基于价值的决策部分更为铁定, 毫不留情, 就选价值最高的, 而基于概率的, 即使某个动作的概率最高, 但是还是不一定会选到他.
我们现在说的动作都是一个一个不连续的动作, 而对于选取连续的动作, 基于价值的方法是无能为力的. 我们却能用一个概率分布在连续动作中选取特定动作, 这也是基于概率的方法的优点之一. 那么这两类使用的方法又有哪些呢?
比如在基于概率这边, 有 Policy Gradients, 在基于价值这边有 Q learning, Sarsa 等. 而且我们还能结合这两类方法的优势之处, 创造更牛逼的一种方法, 叫做 Actor-Critic, actor 会基于概率做出动作, 而 critic 会对做出的动作给出动作的价值, 这样就在原有的 policy gradients 上加速了学习过程.