PL-SVO
pl-svo对第一帧提取点和线段特征,点特征直接保存为Point2f就行,对于线段特征保存线段的两个端点
void detectFeatures( FramePtr frame, vector<cv::Point2f>& px_vec, vector<Vector3d>& f_vec)
提取点和线段特征
list<PointFeat*> new_features; list<LineFeat*> new_features_ls; if(Config::initPoints()) { feature_detection::FastDetector detector( frame->img().cols, frame->img().rows, Config::gridSize(), Config::nPyrLevels()); detector.detect(frame.get(), frame->img_pyr_, Config::triangMinCornerScore(), new_features); } if(Config::initLines()) { feature_detection::LsdDetector detector_ls( frame->img().cols, frame->img().rows, Config::gridSizeSegs(), Config::nPyrLevelsSegs()); detector_ls.detect(frame.get(), frame->img_pyr_, Config::lsdMinLength(), new_features_ls); }
保存点和线段特征到vector<cv::Point2f>& px_vec,对于线段特征,储存的是两个端点和中点三个点的坐标
// First try, introduce endpoints (line segments usually belongs to planes) std::for_each(new_features_ls.begin(), new_features_ls.end(), [&](LineFeat* ftr){ px_vec.push_back(cv::Point2f(ftr->spx[0], ftr->spx[1])); f_vec.push_back(ftr->sf); px_vec.push_back(cv::Point2f((ftr->spx[0]+ftr->epx[0])/2.0, (ftr->spx[1]+ftr->epx[1])/2.0)); f_vec.push_back((ftr->sf+ftr->ef)/2.0); px_vec.push_back(cv::Point2f(ftr->epx[0], ftr->epx[1])); f_vec.push_back(ftr->ef); delete ftr;
然后第二张图像进来,不在进行特征提取,进行金字塔光流跟踪
void trackKlt( FramePtr frame_ref, FramePtr frame_cur, vector<cv::Point2f>& px_ref, vector<cv::Point2f>& px_cur, vector<Vector3d>& f_ref, vector<Vector3d>& f_cur, vector<double>& disparities)
const double klt_win_size = 30.0; const int klt_max_iter = 30; const double klt_eps = 0.001; vector<uchar> status; vector<float> error; vector<float> min_eig_vec; cv::TermCriteria termcrit(cv::TermCriteria::COUNT+cv::TermCriteria::EPS, klt_max_iter, klt_eps); cv::calcOpticalFlowPyrLK(frame_ref->img_pyr_[0], frame_cur->img_pyr_[0], px_ref, px_cur, status, error, cv::Size2i(klt_win_size, klt_win_size), 4, termcrit, cv::OPTFLOW_USE_INITIAL_FLOW);
计算正确跟踪点的视差和三维空间向量
vector<cv::Point2f>::iterator px_ref_it = px_ref.begin(); vector<cv::Point2f>::iterator px_cur_it = px_cur.begin(); vector<Vector3d>::iterator f_ref_it = f_ref.begin(); f_cur.clear(); f_cur.reserve(px_cur.size()); disparities.clear(); disparities.reserve(px_cur.size()); for(size_t i=0; px_ref_it != px_ref.end(); ++i) { // if the point has not been correctly tracked, // remove all occurrences: ref px, ref f, and cur px if(!status[i]) { px_ref_it = px_ref.erase(px_ref_it); px_cur_it = px_cur.erase(px_cur_it); f_ref_it = f_ref.erase(f_ref_it); continue; } f_cur.push_back(frame_cur->c2f(px_cur_it->x, px_cur_it->y)); disparities.push_back(Vector2d(px_ref_it->x - px_cur_it->x, px_ref_it->y - px_cur_it->y).norm()); ++px_ref_it; ++px_cur_it; ++f_ref_it; }
其中frame_cur->c2f(px_cur_it->x, px_cur_it->y)把特征像素点转换成在相机坐标系下的深度归一化的点,并进行畸变校正,再让模变成1,映射到单位球面上面。
inline Vector3d c2f(const Vector2d& px) const { return cam_->cam2world(px[0], px[1]); }
然后对接下来的帧进入FrameHandlerMono::processFrame进行处理
使用上一帧图像的位姿,用作当前图像的初始位姿。然后进行稀疏图像对齐