泡泡一分钟:A Multi-Position Joint Particle Filtering Method for Vehicle Localization in Urban Area

A Multi-Position Joint Particle Filtering Method for Vehicle Localization in Urban Area

城市车辆定位的多位置联合粒子滤波方法

Shuxia Gu, Zhiyu Xiang*, Yi Zhang and Qi Qian

张宁

Abstract—Robust localization is a prerequisite for autonomous vehicles. Traditional visual localization methods like visual odometry suffer error accumulation on long range navigation. In this paper, a flexible road map based probabilistic filtering method is proposed to tackle this problem. To effectively match the ego-trajectory to various curving roads in map, a new representation based on anchor point (AP) which captures the main curving points on the trajectory is presented. Based on APs of the map and trajectory, a flexible Multi-Position Joint Particle Filtering (MPJPF) framework is proposed to correct the position error. The method features the capability of adaptively estimating a series of APs jointly and only updates the estimation at situations with low uncertainty.It explicitly avoids the drawbacks of obliging to determine the current position at large uncertain situations such as dense parallel road branches. The experiments carried out on KITTI benchmark demonstrate our success.

鲁棒的定位是自动驾驶汽车的先决条件。视觉里程计等传统视觉定位方法在远程导航中会产生误差累积。本文提出了一种基于概率滤波方法的灵敏路线图来解决这一问题。 为了有效地将自我轨迹与地图中的各种弯曲道路相匹配,呈现了基于锚点(AP)的新表示,其捕获轨迹上的主要弯曲点。基于地图和轨迹的AP,提出了一种灵活的多位置联合粒子滤波(MPJPF)框架来校正位置误差。该方法具有联合自适应地估计一系列AP的能力,并且仅在具有低不确定性的情况下更新估计。它明确地避免了在大的不确定情况下(例如密集的平行道路分支)必须确定当前位置的缺点。 在KITTI基准测试中进行的实验证明了我们的成功。
本文提出了一种新的多位置联合滤波方法,以减少航位推算定位方法(如视觉里程计)产生的累积漂移误差。为了在参考地图中稳健地定位弯曲轨迹,首先提出了一种有效的锚点(AP)呈现方式。然后给出了整个MPJPF算法。 它能够自适应地更新AP位置,并具有在最不确定条件下同时估计几个AP的能力。利用粒子滤波的机制,实现了能够很好地平衡局部VO和全局参考地图的最佳位置结果。此外,它仅需要输入基本VO和简单的道路水平参考图,这使得它对于很多配备有低成本传感器和有限计算能力的智能车辆流行。实验结果表明,无论轨迹多长或弯曲,我们的方法都能有效地减少定位误差。它提供了一种新的有效方法,可以在没有GPS或其他类型的绝对位置传感器的帮助下进行长时间的车辆定位。
posted @ 2019-01-18 23:10  feifanren  阅读(631)  评论(0编辑  收藏  举报