TensorFlow基础见前博客
简介
传统的验证码识别算法一般需要把验证码分割为单个字符,然后逐个识别。本教程将验证码识别问题转化为分类的问题,实现对验证码进行整体识别。
步骤简介
本教程一共分为四个部分
generate_captcha.py
- 利用 Captcha 库生成验证码;captcha_model.py
- CNN 模型;train_captcha.py
- 训练 CNN 模型;predict_captcha.py
- 识别验证码。
数据学习
安装 captcha 库
pip install captcha
获取训练数据
本教程使用的验证码由数字、大写字母、小写字母组成,每个验证码包含 4 个字符,总共有 62^4 种组合,所以一共有 62^4 种不同的验证码。
#-*- coding:utf-8 -*- from captcha.image import ImageCaptcha from PIL import Image import numpy as np import random import string class generateCaptcha(): def __init__(self, width = 160,#验证码图片的宽 height = 60,#验证码图片的高 char_num = 4,#验证码字符个数 characters = string.digits + string.ascii_uppercase + string.ascii_lowercase):#验证码组成,数字+大写字母+小写字母 self.width = width self.height = height self.char_num = char_num self.characters = characters self.classes = len(characters) def gen_captcha(self,batch_size = 50): X = np.zeros([batch_size,self.height,self.width,1]) img = np.zeros((self.height,self.width),dtype=np.uint8) Y = np.zeros([batch_size,self.char_num,self.classes]) image = ImageCaptcha(width = self.width,height = self.height) while True: for i in range(batch_size): captcha_str = ''.join(random.sample(self.characters,self.char_num)) img = image.generate_image(captcha_str).convert('L') img = np.array(img.getdata()) X[i] = np.reshape(img,[self.height,self.width,1])/255.0 for j,ch in enumerate(captcha_str): Y[i,j,self.characters.find(ch)] = 1 Y = np.reshape(Y,(batch_size,self.char_num*self.classes)) yield X,Y def decode_captcha(self,y): y = np.reshape(y,(len(y),self.char_num,self.classes)) return ''.join(self.characters[x] for x in np.argmax(y,axis = 2)[0,:]) def get_parameter(self): return self.width,self.height,self.char_num,self.characters,self.classes def gen_test_captcha(self): image = ImageCaptcha(width = self.width,height = self.height) captcha_str = ''.join(random.sample(self.characters,self.char_num)) img = image.generate_image(captcha_str) img.save(captcha_str + '.jpg') X = np.zeros([1,self.height,self.width,1]) Y = np.zeros([1,self.char_num,self.classes]) img = img.convert('L') img = np.array(img.getdata()) X[0] = np.reshape(img,[self.height,self.width,1])/255.0 for j,ch in enumerate(captcha_str): Y[0,j,self.characters.find(ch)] = 1 Y = np.reshape(Y,(1,self.char_num*self.classes)) return X,Y
理解训练数据
- X:一个 mini-batch 的训练数据,其 shape 为 [ batch_size, height, width, 1 ],batch_size 表示每批次多少个训练数据,height 表示验证码图片的高,width 表示验证码图片的宽,1 表示图片的通道。
- Y:X 中每个训练数据属于哪一类验证码,其形状为 [ batch_size, class ] ,对验证码中每个字符进行 One-Hot 编码,所以 class 大小为 4*62。
执行:
- 获取验证码和对应的分类
cd /home/ubuntu; python from generate_captcha import generateCaptcha g = generateCaptcha() X,Y = g.gen_test_captcha()
- 查看训练数据
X.shape
Y.shape
可以在 /home/ubuntu 目录下查看生成的验证码,jpg 格式的图片可以点击查看。
模型学习
CNN 模型
总共 5 层网络,前 3 层为卷积层,第 4、5 层为全连接层。对 4 层隐藏层都进行 dropout。网络结构如下所示: input——>conv——>pool——>dropout——>conv——>pool——>dropout——>conv——>pool——>dropout——>fully connected layer——>dropout——>fully connected layer——>output
示例代码:
# -*- coding: utf-8 -* import tensorflow as tf import math class captchaModel(): def __init__(self, width = 160, height = 60, char_num = 4, classes = 62): self.width = width self.height = height self.char_num = char_num self.classes = classes def conv2d(self,x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(self,x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') def weight_variable(self,shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(self,shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) def create_model(self,x_images,keep_prob): #first layer w_conv1 = self.weight_variable([5, 5, 1, 32]) b_conv1 = self.bias_variable([32]) h_conv1 = tf.nn.relu(tf.nn.bias_add(self.conv2d(x_images, w_conv1), b_conv1)) h_pool1 = self.max_pool_2x2(h_conv1) h_dropout1 = tf.nn.dropout(h_pool1,keep_prob) conv_width = math.ceil(self.width/2) conv_height = math.ceil(self.height/2) #second layer w_conv2 = self.weight_variable([5, 5, 32, 64]) b_conv2 = self.bias_variable([64]) h_conv2 = tf.nn.relu(tf.nn.bias_add(self.conv2d(h_dropout1, w_conv2), b_conv2)) h_pool2 = self.max_pool_2x2(h_conv2) h_dropout2 = tf.nn.dropout(h_pool2,keep_prob) conv_width = math.ceil(conv_width/2) conv_height = math.ceil(conv_height/2) #third layer w_conv3 = self.weight_variable([5, 5, 64, 64]) b_conv3 = self.bias_variable([64]) h_conv3 = tf.nn.relu(tf.nn.bias_add(self.conv2d(h_dropout2, w_conv3), b_conv3)) h_pool3 = self.max_pool_2x2(h_conv3) h_dropout3 = tf.nn.dropout(h_pool3,keep_prob) conv_width = math.ceil(conv_width/2) conv_height = math.ceil(conv_height/2) #first fully layer conv_width = int(conv_width) conv_height = int(conv_height) w_fc1 = self.weight_variable([64*conv_width*conv_height,1024]) b_fc1 = self.bias_variable([1024]) h_dropout3_flat = tf.reshape(h_dropout3,[-1,64*conv_width*conv_height]) h_fc1 = tf.nn.relu(tf.nn.bias_add(tf.matmul(h_dropout3_flat, w_fc1), b_fc1)) h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) #second fully layer w_fc2 = self.weight_variable([1024,self.char_num*self.classes]) b_fc2 = self.bias_variable([self.char_num*self.classes]) y_conv = tf.add(tf.matmul(h_fc1_drop, w_fc2), b_fc2) return y_conv
训练 CNN 模型
每批次采用 64 个训练样本,每 100 次循环采用 100 个测试样本检查识别准确度,当准确度大于 99% 时,训练结束,采用 GPU 需要 4-5 个小时左右,CPU 大概需要 20 个小时左右。
示例代码:
现在您可以在 /home/ubuntu 目录下创建源文件 train_captcha.py,内容可参考:
#-*- coding:utf-8 -*- import tensorflow as tf import numpy as np import string import generate_captcha import captcha_model if __name__ == '__main__': captcha = generate_captcha.generateCaptcha() width,height,char_num,characters,classes = captcha.get_parameter() x = tf.placeholder(tf.float32, [None, height,width,1]) y_ = tf.placeholder(tf.float32, [None, char_num*classes]) keep_prob = tf.placeholder(tf.float32) model = captcha_model.captchaModel(width,height,char_num,classes) y_conv = model.create_model(x,keep_prob) cross_entropy = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=y_,logits=y_conv)) train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) predict = tf.reshape(y_conv, [-1,char_num, classes]) real = tf.reshape(y_,[-1,char_num, classes]) correct_prediction = tf.equal(tf.argmax(predict,2), tf.argmax(real,2)) correct_prediction = tf.cast(correct_prediction, tf.float32) accuracy = tf.reduce_mean(correct_prediction) saver = tf.train.Saver() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) step = 1 while True: batch_x,batch_y = next(captcha.gen_captcha(64)) _,loss = sess.run([train_step,cross_entropy],feed_dict={x: batch_x, y_: batch_y, keep_prob: 0.75}) print ('step:%d,loss:%f' % (step,loss)) if step % 100 == 0: batch_x_test,batch_y_test = next(captcha.gen_captcha(100)) acc = sess.run(accuracy, feed_dict={x: batch_x_test, y_: batch_y_test, keep_prob: 1.}) print ('###############################################step:%d,accuracy:%f' % (step,acc)) if acc > 0.99: saver.save(sess,"./capcha_model.ckpt") break step += 1
然后执行:
cd /home/ubuntu;
python train_captcha.py
执行结果:
step:75193,loss:0.010931 step:75194,loss:0.012859 step:75195,loss:0.008747 step:75196,loss:0.009147 step:75197,loss:0.009351 step:75198,loss:0.009746 step:75199,loss:0.010014 step:75200,loss:0.009024 ###############################################step:75200,accuracy:0.992500
使用训练好的模型:
作为实验,你可以通过调整
train_captcha.py
文件中 if acc > 0.99:
代码行的准确度节省训练时间(比如将 0.99 为 0.01),体验训练过程;我们已经通过长时间的训练得到了一个训练好的模型,可以通过如下命令将训练集下载到本地。wget http://tensorflow-1253902462.cosgz.myqcloud.com/captcha/capcha_model.zip
unzip -o capcha_model.zip
识别验证码
测试数据集:
我们在腾讯云的 COS 上准备了 100 个验证码作为测试集,使用
wget
命令获取:wget http://tensorflow-1253902462.cosgz.myqcloud.com/captcha/captcha.zip
unzip -q captcha.zip
然后执行:
cd /home/ubuntu;
python predict_captcha.py captcha/0hWn.jpg
执行结果:
0hWn
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· Linux glibc自带哈希表的用例及性能测试
· 深入理解 Mybatis 分库分表执行原理
· 如何打造一个高并发系统?
· .NET Core GC压缩(compact_phase)底层原理浅谈
· 现代计算机视觉入门之:什么是图片特征编码
· 手把手教你在本地部署DeepSeek R1,搭建web-ui ,建议收藏!
· Spring AI + Ollama 实现 deepseek-r1 的API服务和调用
· 数据库服务器 SQL Server 版本升级公告
· C#/.NET/.NET Core技术前沿周刊 | 第 23 期(2025年1.20-1.26)
· 程序员常用高效实用工具推荐,办公效率提升利器!