k8s之自定义指标API部署prometheus
1.自定义指标-prometheus
node_exporter是agent;PromQL相当于sql语句来查询数据;
k8s-prometheus-adapter:prometheus是不能直接解析k8s的指标的,需要借助k8s-prometheus-adapter转换成api;
kube-state-metrics是用来整合数据的.
访问:https://github.com/kubernetes/kubernetes/tree/master/cluster/addons/prometheus
git clone https://github.com/iKubernetes/k8s-prom.git cd k8s-prom && kubectl apply -f namespace.yaml # 部署node_exporter cd node_exporter/ && kubectl apply -f . # 部署prometheus,注释掉资源限制limit, cd prometheus/ && vim prometheus-deploy.yaml && kubectl apply -f . #resources: # limits: # memory: 200Mi 这个pod没有部署好,prometheus就无法收集到数据,导致grafana界面没有数据,浪费了一天时间 kubectl get pods -n prom prometheus-server-64877844d4-gx4jr 1/1 Running 0 <invalid>
访问NodePort,访问prometheus
部署k8s-prometheus-adapter,需要自制证书
cd kube-state-metrics/ && kubectl apply -f . cd /etc/kubernetes/pki/ (umask 077; openssl genrsa -out serving.key 2048) openssl req -new -key serving.key -out serving.csr -subj "/CN=serving" openssl x509 -req -in serving.csr -CA ./ca.crt -CAkey ./ca.key -CAcreateserial -out serving.crt -days 3650 # custom-metrics-apiserver-deployment.yaml会用到secretName: cm-adapter-serving-certs kubectl create secret generic cm-adapter-serving-certs --from-file=serving.crt=./serving.crt --from-file=serving.key=./serving.key -n prom # 部署k8s-prometheus-adapter,由于版本问题,需要下载两个文件,将两个文件中的名称空间改为prom cd k8s-prometheus-adapter/ mv custom-metrics-apiserver-deployment.yaml .. wget https://raw.githubusercontent.com/DirectXMan12/k8s-prometheus-adapter/master/deploy/manifests/custom-metrics-apiserver-deployment.yam wget https://raw.githubusercontent.com/DirectXMan12/k8s-prometheus-adapter/master/deploy/manifests/custom-metrics-config-map.yaml kubectl apply -f . kubectl api-versions # 必须出现这个api,并且开启代理可以访问到数据 custom.metrics.k8s.io/v1beta1 kubectl proxy --port=8080 curl http://localhost:8080/apis/custom.metrics.k8s.io/v1beta1/ # prometheus和grafana整合 wget https://raw.githubusercontent.com/kubernetes-retired/heapster/master/deploy/kube-config/influxdb/grafana.yaml 把namespace: kube-system改成prom,有两处; 把env里面的下面两个注释掉: - name: INFLUXDB_HOST value: monitoring-influxdb 在最有一行加个type: NodePort ports: - port: 80 targetPort: 3000 selector: k8s-app: grafana type: NodePort kubectl apply -f grafana.yaml kubectl get svc -n prom monitoring-grafana NodePort 10.96.228.0 <none> 80:30336/TCP 13h
prom名称空间内的所有pod
访问:10.0.0.20:30336
两个k8s模板:https://grafana.com/dashboards/6417 https://grafana.com/dashboards/315
一切顺利的话,立马就能看到监控数据
2.HPA(水平pod自动扩展)
当pod压力大了,会根据负载自动扩展Pod个数以缓解压力
kubectl api-versions |grep auto 创建一个带有资源限制的pod kubectl run myapp --image=ikubernetes/myapp:v1 --replicas=1 \ --requests='cpu=50m,memory=256Mi' --limits='cpu=50m,memory=256Mi' \ --labels='app=myapp' --expose --port=80 # 让myapp这个控制器支持自动扩展,--cpu-percent表示cpu超过这个值就开始扩展 kubectl autoscale deployment myapp --min=1 --max=5 --cpu-percent=60 kubectl get hpa # 对pod进行压力测试 kubectl patch svc myapp -p '{"spec":{"type": "NodePort"}}' yum install httpd-tools # 随着cpu压力的上升,会看到自动扩展为4个或更多的pod ab -c 1000 -n 5000000 http://172.16.1.100:31990/index.html # hpa v1版本只能根据cpu利用率扩展pod,hpa v2可以根据自定义指标利用率水平扩展pod kubectl delete hpa myapp cat hpa-v2-demo.yaml apiVersion: autoscaling/v2beta1 kind: HorizontalPodAutoscaler metadata: name: myapp-hpa-v2 spec: scaleTargetRef: # 根据什么指标来做评估压力 apiVersion: apps/v1 kind: Deployment name: myapp # 对哪个控制器做自动扩展 minReplicas: 1 maxReplicas: 10 metrics: # 依据哪些指标来进行评估 - type: Resource # 基于资源进行评估 resource: name: cpu targetAverageUtilization: 55 # cpu使用率超过55%,就自动水平扩展pod个数 - type: Resource resource: name: memory # v2版可以根据内存进行评估 targetAverageValue: 50Mi # 内存使用超过50M,就自动水平扩展pod个数 kubectl apply -f hpa-v2-demo.yaml # 进行压测即可看到pod会自动扩展 # 自定义的资源指标,pod被开发好之后,得支持这些指标,否则就是白写 # 下面这个例子中支持并发参数的镜像地址:https://hub.docker.com/r/ikubernetes/metrics-app/ cat hpa-v2-custom.yaml apiVersion: autoscaling/v2beta1 kind: HorizontalPodAutoscaler metadata: name: myapp-hpa-v2 spec: scaleTargetRef: apiVersion: apps/v1 kind: Deployment name: myapp minReplicas: 1 maxReplicas: 10 metrics: - type: Pods # 利用pod中定义的指标进行扩缩 pods: metricName: http_requests # 自定义的资源指标 targetAverageValue: 800m # m表示个数,并发数800
参考博客:http://blog.itpub.net/28916011/viewspace-2216340/
prometheus监控mysql、k8s:https://www.cnblogs.com/sfnz/p/6566951.html