22. Generate Parentheses - Medium
Given n pairs of parentheses, write a function to generate all combinations of well-formed parentheses.
For example, given n = 3, a solution set is:
[ "((()))", "(()())", "(())()", "()(())", "()()()" ]
M1: backtracking
只用一个stringbuilder,每一层递归完,删掉最后一个char,回到上一层
time: O(2^n), space: O(n)
class Solution { public List<String> generateParenthesis(int n) { List<String> res = new ArrayList<>(); backtracking(n, n, new StringBuilder(), res); return res; } private void backtracking(int l, int r, StringBuilder sb, List<String> res) { if(l > r || l < 0 || r < 0) return; if(l == 0 && r == 0) res.add(sb.toString()); if(l > 0) { backtracking(l - 1, r, sb.append("("), res); sb.deleteCharAt(sb.length() - 1); } if(r > 0) { backtracking(l, r - 1, sb.append(")"), res); sb.deleteCharAt(sb.length() - 1); } } }
M2: dfs
符合条件的能被加入res中的字符串,有n个 ( 和n个),当sb的长度为2n时,加入res。在recursion的时候,判断string是否符合条件,可以用两个参数l, r表示 ( 和 ) 剩余的个数,如果递归过程中,字符串中)的个数大于(的个数,即l > r,字符串不符合条件;否则,当 l 和 r 都 = 0时,把字符串加入res。
time: O(2^n), space: O(n)
class Solution { public List<String> generateParenthesis(int n) { List<String> res = new ArrayList<>(); backtracking(n, n, "", res); return res; } private void backtracking(int l, int r, String s, List<String> res) { if(l > r || l < 0 || r < 0) return; if(l == 0 && r == 0) res.add(s); if(l > 0) backtracking(l - 1, r, s + "(", res); if(r > 0) backtracking(l, r - 1, s + ")", res); } }
另一种写法
time: O(2 ^ 2n), space: O(2 ^ 2n)
class Solution { public List<String> generateParenthesis(int n) { List<String> res = new ArrayList<>(); dfs(n, 0, 0, new StringBuilder(), res); return res; } private void dfs(int n, int l, int r, StringBuilder sb, List<String> res) { if(l == n && r == n) { res.add(sb.toString()); return; } if(l < n) { sb.append("("); dfs(n, l + 1, r, sb, res); sb.deleteCharAt(sb.length() - 1); } if(l > r) { sb.append(")"); dfs(n, l, r + 1, sb, res); sb.deleteCharAt(sb.length() - 1); } } }