268. Missing Number - Easy
Given an array containing n distinct numbers taken from 0, 1, 2, ..., n
, find the one that is missing from the array.
Example 1:
Input: [3,0,1] Output: 2
Example 2:
Input: [9,6,4,2,3,5,7,0,1] Output: 8
Note:
Your algorithm should run in linear runtime complexity. Could you implement it using only constant extra space complexity?
M1: 求和
因为是由0~n组成的数组,只缺少一个数字,可以先通过公式计算出应有的和,再遍历数组一个个减去,剩下的数就是missing number
时间:O(N),空间:O(1)
class Solution { public int missingNumber(int[] nums) { int n = nums.length; int sum = n * (n + 1) / 2; for(int i = 0; i < n; i++) { sum -= nums[i]; } return sum; } }
M2: hash table
hashset,扫描两次,第一次把nums中元素放进set,第二次遍历0~n,找出map中没有的元素
time: O(n), space: O(n)
class Solution { public int missingNumber(int[] nums) { Set<Integer> set = new HashSet<>(); for(int n : nums) { set.add(n); } int res = 0; for(int i = 0; i <= nums.length; i++) { if(!set.contains(i)) { res = i; break; } } return res; } }
hashset, 扫描两次,第一次把1~n所有元素加入set,第二次把nums中的元素从set中删除,剩下的就是missing number
time: O(n), space: O(n)
class Solution { public int missingNumber(int[] nums) { Set<Integer> set = new HashSet<>(); for(int n : nums) { set.add(n); } for(int i = 1; i <= nums.length; i++) { if(!set.remove(i)) { return i; } } return 0; } }
M3: bit operation
先把0~n全部xor,再对nums中的元素全部xor
time: O(n), space: O(1)
class Solution { public int missingNumber(int[] nums) { int res = 0; for(int i = 0; i <= nums.length; i++) { res ^= i; } for(int n : nums) { res ^= n; } return res; } }