python内存管理
内存管理
先从较浅的层面来说,Python的内存管理机制可以从三个方面来讲
(1)引用计数
(2)垃圾回收
(3)内存池机制
(1)引用计数
在Python中,每个对象都有存有指向该对象的引用总数,即引用计数(reference count)。
我们可以使用sys包中的getrefcount(),来查看某个对象的引用计数。需要注意的是,当使用某个引用作为参数,传递给getrefcount()时,参数实际上创建了一个临时的引用。因此,getrefcount()所得到的结果,会比期望的多1。
引用计数
from sys import getrefcount # 普通引用 a = [1, 2, 3] print(getrefcount(a)) # 2 b = a print(getrefcount(b)) # 3 # 对象间引用 # class class from_obj(object): def __init__(self, to_obj): self.to_obj = to_obj c = [1,2,3] d = from_obj(c) print(id(d.to_obj)) # 86378576 print(id(c)) # 86378576 print(getrefcount(c)) # 3 print(getrefcount(d)) # 2 # 其他 e = [] f = [e,e] print(getrefcount(e)) # 4 print(getrefcount(f)) # 2
引用减少
####### 引用减少 from sys import getrefcount a = [1, 2, 3] b = a print(getrefcount(b)) # 3 del a print(getrefcount(b)) # 2 c = [1,2,3] del c[0] print(c) # [2, 3] print(getrefcount(c)) # 2
引用环
########### 引用环 from sys import getrefcount a = [] b = [a] a.append(b) print(getrefcount(a)) # 3 print(getrefcount(b)) # 3 c = [] c.append(c) print(getrefcount(c)) # 3
objgraph包来绘制其引用关系
容器对象的引用可能构成很复杂的拓扑结构。我们可以用objgraph包来绘制其引用关系,比如
x = [1, 2, 3] y = [x, dict(key1=x)] z = [y, (x, y)] import objgraph objgraph.show_refs([z], filename='ref_topo.png')
(2)垃圾回收
引用计数为0则回收
从基本原理上,当Python的某个对象的引用计数降为0时,说明没有任何引用指向该对象,该对象就成为要被回收的垃圾了。比如某个新建对象,它被分配给某个引用,对象的引用计数变为1。如果引用被删除,对象的引用计数为0,那么该对象就可以被垃圾回收。比如下面的表:
a = [1, 2, 3] del a
del a后,已经没有任何引用指向之前建立的[1, 2, 3]这个表。用户不可能通过任何方式接触或者动用这个对象。这个对象如果继续待在内存里,就成了不健康的脂肪。当垃圾回收启动时,Python扫描到这个引用计数为0的对象,就将它所占据的内存清空。
垃圾回收时,Python不能进行其它的任务。频繁的垃圾回收将大大降低Python的工作效率。如果内存中的对象不多,就没有必要总启动垃圾回收。所以,Python只会在特定条件下,自动启动垃圾回收。当Python运行时,会记录其中分配对象(object allocation)和取消分配对象(object deallocation)的次数。当两者的差值高于某个阈值时,垃圾回收才会启动。
我们可以通过gc模块的get_threshold()方法,查看该阈值:
import gc print(gc.get_threshold())
返回(700, 10, 10),后面的两个10是与分代回收相关的阈值,后面可以看到。700即是垃圾回收启动的阈值。可以通过gc中的set_threshold()方法重新设置。
我们也可以手动启动垃圾回收,即使用gc.collect()。
分代回收
Python将所有的对象分为0,1,2三代。所有的新建对象都是0代对象。当某一代对象经历过垃圾回收,依然存活,那么它就被归入下一代对象。垃圾回收启动时,一定会扫描所有的0代对象。如果0代经过一定次数垃圾回收,那么就启动对0代和1代的扫描清理。当1代也经历了一定次数的垃圾回收后,那么会启动对0,1,2,即对所有对象进行扫描。
这两个次数即上面get_threshold()返回的(700, 10, 10)返回的两个10。也就是说,每10次0代垃圾回收,会配合1次1代的垃圾回收;而每10次1代的垃圾回收,才会有1次的2代垃圾回收。
同样可以用set_threshold()来调整,比如对2代对象进行更频繁的扫描。
import gc gc.set_threshold(700, 10, 5)
孤立的引用环
引用环的存在会给上面的垃圾回收机制带来很大的困难。这些引用环可能构成无法使用,但引用计数不为0的一些对象。
a = [] b = [a] a.append(b) del a del b
上面我们先创建了两个表对象,并引用对方,构成一个引用环。删除了a,b引用之后,这两个对象不可能再从程序中调用,就没有什么用处了。但是由于引用环的存在,这两个对象的引用计数都没有降到0,不会被垃圾回收。
孤立的引用环
为了回收这样的引用环,Python复制每个对象的引用计数,可以记为gc_ref。假设,每个对象i,该计数为gc_ref_i。Python会遍历所有的对象i。对于每个对象i引用的对象j,将相应的gc_ref_j减1。
遍历后的结果
在结束遍历后,gc_ref不为0的对象,和这些对象引用的对象,以及继续更下游引用的对象,需要被保留。而其它的对象则被垃圾回收。
(3)内存池机制
Python的内存机制以金字塔行,-1,-2层主要有操作系统进行操作,
第0层是C中的malloc,free等内存分配和释放函数进行操作;
第1层和第2层是内存池,有Python的接口函数PyMem_Malloc函数实现,当对象小于256K时有该层直接分配内存;
第3层是最上层,也就是我们对Python对象的直接操作;
在 C 中如果频繁的调用 malloc 与 free 时,是会产生性能问题的.再加上频繁的分配与释放小块的内存会产生内存碎片. Python 在这里主要干的工作有:
如果请求分配的内存在1~256字节之间就使用自己的内存管理系统,否则直接使用 malloc.
这里还是会调用 malloc 分配内存,但每次会分配一块大小为256k的大块内存.
经由内存池登记的内存到最后还是会回收到内存池,并不会调用 C 的 free 释放掉.以便下次使用.对于简单的Python对象,例如数值、字符串,元组(tuple不允许被更改)采用的是复制的方式(深拷贝?),也就是说当将另一个变量B赋值给变量A时,虽然A和B的内存空间仍然相同,但当A的值发生变化时,会重新给A分配空间,A和B的地址变得不再相同。
参考or转发
https://www.cnblogs.com/vamei/p/3232088.html
https://www.cnblogs.com/CBDoctor/p/3781078.html