OpenCV——肤色检测

一、RGB color space

检测代码如下:

void SkinRGB(IplImage* src,IplImage* dst)
{
    //RGB颜色空间
    //均匀照明:R>95,G>40,B>20,R-B>15,R-G>15,R>B%R
    //侧向照明:R>200,G>210,B>170,R-B<=15,R>B,G>B
        
    int height = src->height, width = src->width, channel = src->nChannels, step = src->widthStep;
    int b = 0, g = 1, r = 2;

    cvZero(dst);
    unsigned char* p_src = (unsigned char*)src->imageData;
    unsigned char* p_dst = (unsigned char*)dst->imageData;
        
    for(int j = 0; j < height; j++){
        for(int i = 0; i < width; i++){
            if((p_src[j*step+i*channel+r] > 95 && p_src[j*step+i*channel+g] > 40 && p_src[j*step+i*channel+b] > 20 && 
                (p_src[j*step+i*channel+r] - p_src[j*step+i*channel+b]) > 15 && (p_src[j*step+i*channel+r] - p_src[j*step+i*channel+g]) > 15) || 
                (p_src[j*step+i*channel+r] > 200 && p_src[j*step+i*channel+g] > 210 && p_src[j*step+i*channel+b] > 170 && 
                (p_src[j*step+i*channel+r] - p_src[j*step+i*channel+b]) <= 15 && p_src[j*step+i*channel+r] > p_src[j*step+i*channel+b] && 
                p_src[j*step+i*channel+g] > p_src[j*step+i*channel+b]))
                p_dst[j*width+i]=255;
        }
    }
}

二、二次多项式模式检测(RG color space)

void cvSkinRG(IplImage* rgb,IplImage* gray)    
{    
    assert(rgb->nChannels==3&&gray->nChannels==1);    
        
    const int R=2;    
    const int G=1;    
    const int B=0;    
    
    double Aup=-1.8423;    
    double Bup=1.5294;    
    double Cup=0.0422;    
    double Adown=-0.7279;    
    double Bdown=0.6066;    
    double Cdown=0.1766;  
for (int h=0;h<rgb->height;h++) { unsigned char* pGray=(unsigned char*)gray->imageData+h*gray->widthStep; unsigned char* pRGB=(unsigned char* )rgb->imageData+h*rgb->widthStep; for (int w=0;w<rgb->width;w++){ int s=pRGB[R]+pRGB[G]+pRGB[B]; double r=(double)pRGB[R]/s; double g=(double)pRGB[G]/s; double Gup=Aup*r*r+Bup*r+Cup; double Gdown=Adown*r*r+Bdown*r+Cdown; double Wr=(r-0.33)*(r-0.33)+(g-0.33)*(g-0.33); if (g<Gup && g>Gdown && Wr>0.004){ *pGray=255; } else{ *pGray=0; } pGray++; pRGB+=3; } } }

三、Ycrcb之cr分量+otsu阈值化

原理:       a.将RGB图像转换到YCrCb颜色空间,提取Cr分量图像           

                b.对Cr做自适应二值化处理(Ostu法)

void cvSkinOtsu(IplImage* src, IplImage* dst)  
{  
    //Cr自适应阈值法  
    //  
  
    IplImage* img_ycrcb=cvCreateImage(cvGetSize(src),IPL_DEPTH_8U,3);  
    IplImage* img_cr=cvCreateImage(cvGetSize(src),IPL_DEPTH_8U,1);  
  
    cvCvtColor(src,img_ycrcb,CV_BGR2YCrCb);  
    cvSplit(img_ycrcb,0,img_cr,0,0);  
    cvThresholdOtsu(img_cr,img_cr);  
    cvCopy(img_cr,dst);  
  
    cvReleaseImage(&img_ycrcb);  
    cvReleaseImage(&img_cr);  
}  



void cvThresholdOtsu(IplImage* src, IplImage* dst)  
{  
    int height=src->height,width=src->width,threshold=0;  
    double histogram[256]={0};  
    double average=0.0,max_variance=0.0,w=0.0,u=0.0;  
    IplImage* temp=cvCreateImage(cvGetSize(src),src->depth,1);  
    if(src->nChannels!=1)cvCvtColor(src,temp,CV_BGR2GRAY);  
    else cvCopy(src,temp);  
  
    unsigned char* p_temp=(unsigned char*)temp->imageData;  
  
    //计算灰度直方图  
    //  
    for(int j=0;j<height;j++) {  
        for(int i=0;i<width;i++) {  
            histogram[p_temp[j*width+i]]++;  
        }  
    }  
    for(int i=0;i<256;i++)histogram[i]=histogram[i]/(double)(height*width);  
  
    //计算平局值  
    for(int i=0;i<256;i++)average+=i*histogram[i];  
  
    for(int i=0;i<256;i++) {  
        w+=histogram[i];  
        u+=i*histogram[i];  
  
        double t=average*w-u;    
        double variance=t*t/(w*(1-w));    
        if(variance>max_variance) {    
            max_variance=variance;    
            threshold=i;    
        }    
    }  
    cvThreshold(temp,dst,threshold,255,CV_THRESH_BINARY);  
  
    cvReleaseImage(&temp);  
}

四、OpenCV自带肤色检测类——CvAdaptiveSkinDetector

 通过颜色阈值分割肤色部分,皮肤检测算法是在HSV空间进行。流程如下:

//构造函数
CvAdaptiveSkinDetector(int samplingDivider = 1, int morphingMethod = MORPHING_METHOD_NONE);

/*
参数1:样本采样的间隔,默认情况下为1,即表示不进行降采样
参数2:图形学操作方式,即对用皮肤检测后的图像进行图形学操作。其取值有3种可能——MORPHING_METHOD_ERODE(只进行一次腐蚀操作);MORPHING_METHOD_ERODE_ERODE(连续进行2次腐蚀操作);MORPHING_METHOD_ERODE_DILATE(先进行一次腐蚀操作,后进行一次膨胀操作)
*/
virtual void process(IplImage *inputBGRImage, IplImage *outputHueMask);

/*
参数1:需要进行皮肤检测的输入图像
参数2:输出皮肤的掩膜图像——值为1代表该像素为皮肤,值为0代表非皮肤。
*/

PS:这个函数只有opencv的c版本的,因为CvAdaptiveSkinDetector这个类放在opencv源码里的contrib目录里,即表示比较新的但不成熟的算法。

#include <opencv\cv.h>  
#include <opencv\highgui.h>  
#include <contrib\contrib.hpp>  
#include <core\core.hpp>  
#include <imgproc\imgproc.hpp>  
#include<time.h>  
  
int main()  
{ 
CvCapture
* capture=cvCreateCameraCapture(0); cvNamedWindow("Input Video",1); cvNamedWindow("Output Video",1); IplImage* img_src=NULL; IplImage* input_img=NULL; IplImage* output_mask=NULL; IplImage* output_img=NULL; clock_t start,finish; double duration; CvAdaptiveSkinDetector skin_detector(1,CvAdaptiveSkinDetector::MORPHING_METHOD_ERODE_DILATE); //定义肤色检测算子 while(1)
{ img_src
=cvQueryFrame(capture); if(!img_src) break; cvShowImage("Input Video",img_src); if(input_img==NULL){ input_img=cvCreateImage(cvGetSize(img_src),img_src->depth,img_src->nChannels); } cvCopy(img_src,input_img); output_img=cvCreateImage(cvGetSize(img_src),img_src->depth,img_src->nChannels); cvZero(output_img); if(output_mask==NULL){ output_mask=cvCreateImage(cvGetSize(img_src),img_src->depth,1); } //肤色检测 // start=clock(); skin_detector.process(input_img,output_mask); finish=clock(); duration=(double)(finish-start)/CLOCKS_PER_SEC; printf("elapsed time :%.0f 毫秒\n",duration*1000); cvCopy(img_src,output_img,output_mask); cvShowImage("Output Video",output_img); char c=cvWaitKey(33); if(c==27)break; } cvReleaseCapture(&capture); cvDestroyWindow("Video"); }

五、HSV检测

void cvSkinHSV(IplImage* src,IplImage* dst)    
{    
    IplImage* hsv=cvCreateImage(cvGetSize(src),8,3);    
    //IplImage* cr=cvCreateImage(cvGetSize(src),8,1);     
    //IplImage* cb=cvCreateImage(cvGetSize(src),8,1);     
    cvCvtColor(src,hsv,CV_BGR2HSV);    
    //cvSplit(ycrcb,0,cr,cb,0);     
    
    static const int V=2;    
    static const int S=1;    
    static const int H=0;    
    
    //IplImage* dst=cvCreateImage(cvGetSize(_dst),8,3);     
    cvZero(dst);    
    
    for (int h=0;h<src->height;h++) {    
        unsigned char* phsv=(unsigned char*)hsv->imageData+h*hsv->widthStep;    
        unsigned char* psrc=(unsigned char*)src->imageData+h*src->widthStep;    
        unsigned char* pdst=(unsigned char*)dst->imageData+h*dst->widthStep;    
        for (int w=0;w<src->width;w++) {    
            if (phsv[H]>=7&&phsv[H]<=29)    
            {    
                    memcpy(pdst,psrc,3);    
            }    
            phsv+=3;    
            psrc+=3;    
            pdst+=3;    
        }    
    }    
    //cvCopyImage(dst,_dst);     
    //cvReleaseImage(&dst);     
}    

 

posted @ 2016-10-29 15:02  Not-Bad  阅读(10152)  评论(0编辑  收藏  举报