Pandas常用函数入门

一.Pandas

Python Data Analysis Library或Pandas是基于NumPy的一种工具,该工具是为了解决数据分析任务而创建的。Pandas纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。Pandas提供了大量能使我们快速便捷地处理数据的函数和方法。

 

二.Series

Series是一维数组,与Numpy中的一维array类似。二者与Python基本的数据结构List也很相近,其区别是List中的元素可以是不同的数据类型,而Array和Series中则只允许存储相同的数据类型。

1.创建

# 通过list创建Series
s1 = pd.Series([7, 3, 6, 2, 9, 5, 8])
# 通过dict创建Series
s2 = pd.Series({"a":1, "b":2, "c":3})
# 通过list创建Series,并指定index
s3 = pd.Series([5, 2, 7, 4],["a", "b", "c", "b"])

2.选取

# 获取前3个数据
s1.head(3) 
# 获取后3个数据
s1.tail(3)
# 获取index为2的数据
s1[2]
# 获取1<=index<4的数据
s1[1:4]
# 获取index>3的数据
s1[s1.index>3]
# 获取数据值>5的数据
s1[s1>5]

3.增加、删除、修改

# 增加数据index=8
s1[8] = -1
# 删除数据index=3,不修改原Series
s1 = s1.drop(3)
# 对1<=index<3的数据赋值30
s1[1:3] = 30
# 对index为4,6的数据赋值50
s1[4, 6] = 50

 

三.DataFrame

DataFrame是二维的表格型数据结构。可以将DataFrame理解为Series的容器。

1.创建

# 通过dict创建DataFrame
data = {'name':["google", "amazon", "apple", "youtube", "oracle"], 'age':[33, 44, 11, 66, 44], "money" : [400, 200, 100, 800, 500]}
df1 = pd.DataFrame(data, columns = ["name", "age", "money"])

2.时间序列类型index

# 月
dates = pd.date_range('2017-10-08', periods = 10, freq = "M")
# 天
dates = pd.date_range('2017-10-08', periods = 10, freq = "D")
# 时
dates = pd.date_range('2017-10-08', periods = 10, freq = "H")

3.选取

# 获取前3行数据
df1.head(3)
# 获取后3行数据
df1.tail(3)
# 获取列
df1.name, df1['name'], df1[["name", "money"]]
# 获取行
df1[0:3], df1.loc[0:3]
# 同时获取行列
df1.loc[0:3, ["name", "money"]]

4.增加、删除、修改

# 增加列
df1["new"] = 6
# 删除列,不修改原DataFrame
df1 = df1.drop("new", axis = 1)
# 增加行,修改原DataFrame
df1.loc[df1.index.max() + 1] = {"name": "microsoft", "age": 70, "money": 300}
# 增加行,不修改原DataFrame
df1 = df1.append([{"name": "facebook", "age": 701, "money": 900}], ignore_index = True)
# 删除行,不修改原DataFrame
df1 = df1.drop([2])
# 修改数据
df1.loc[5,"age"] = 888
df1.loc[8:10, ["age", "money"]] = [11, 222]

5.WHERE

# 过滤数据,使用DataFrame.dtypes查看数据类型
df1[df1["age"] > 30]
df1[(df1["age"] > 30) & (df1["money"] < 600)], df1[(df1.age > 40) & (df1.money < 600)]
df1[df1["name"].isin(["amazon", "youtube"])]

6.DISTINCT

# 去重
df1.age.drop_duplicates()
df1[["age", "money"]].drop_duplicates()

7.JOIN

# 联接
df3 = pd.merge(df1, df2, how="left", left_on = "name", right_on = "name")
df3 = pd.merge(df1, df2, how="right", left_on = "name", right_on = "name")

8.GROUP BY

# 分组
df1.groupby("age")["money"].sum()
df1.groupby(["age", "name"])["money"].count()

9.ORDER BY

# 排序
df1.sort_values("age", ascending=True)
df1.sort_values(["age", "money"], ascending=[True, False])

10.UNION

# 合并
df2 = df1.copy(True)
df3 = pd.concat([df1,df2], ignore_index = True)
df3 = df1.append(df2, ignore_index = True)

11.导入和保存

Excel格式需要安装openpyxl、xlrd包

# 保存为csv格式
df1.to_csv("data.csv", encoding="utf-8")
# 从csv文件读取
df1 = pd.read_csv("data.csv")
# 保存为excel格式
df1.to_excel("data.xlsx", sheet_name = "Sheet1", encoding="utf-8")
# 从excel文件读取
df1 = pd.read_excel("data.xlsx", sheet_name = "Sheet1")
posted @ 2017-11-08 19:59  faramita2016  阅读(1429)  评论(0编辑  收藏  举报