spark checkpoint机制

首先rdd.checkpoint()本身并没有执行任何的写操作,只是做checkpointDir是否为空,然后生成一个ReliableRDDCheckpointData对象checkpointData,这个对象完成checkpoint的大部分工作。

/**
    * 只是生成了一个ReliableRDDCheckpointData的对象,并没有具体的实质操作
    * Mark this RDD for checkpointing. It will be saved to a file inside the checkpoint
    * directory set with `SparkContext#setCheckpointDir` and all references to its parent
    * RDDs will be removed. This function must be called before any job has been
    * executed on this RDD. It is strongly recommended that this RDD is persisted in
    * memory, otherwise saving it on a file will require recomputation.
    */
  def checkpoint(): Unit = RDDCheckpointData.synchronized {
    // NOTE: we use a global lock here due to complexities downstream with ensuring
    // children RDD partitions point to the correct parent partitions. In the future
    // we should revisit this consideration.
    if (context.checkpointDir.isEmpty) {
      throw new SparkException("Checkpoint directory has not been set in the SparkContext")
    } else if (checkpointData.isEmpty) {
      checkpointData = Some(new ReliableRDDCheckpointData(this))
    }
  }

真正触发checkpoint操作的是rdd调用完checkpoint之后执行完的第一个action操作。

  /**
    * Run a function on a given set of partitions in an RDD and pass the results to the given
    * handler function. This is the main entry point for all actions in Spark.
    */
  def runJob[T, U: ClassTag](
                              rdd: RDD[T],
                              func: (TaskContext, Iterator[T]) => U,
                              partitions: Seq[Int],
                              resultHandler: (Int, U) => Unit): Unit = {
    if (stopped.get()) {
      throw new IllegalStateException("SparkContext has been shutdown")
    }
    val callSite = getCallSite
    val cleanedFunc = clean(func)
    logInfo("Starting job: " + callSite.shortForm)
    if (conf.getBoolean("spark.logLineage", false)) {
      logInfo("RDD's recursive dependencies:\n" + rdd.toDebugString)
    }
    dagScheduler.runJob(rdd, cleanedFunc, partitions, callSite, resultHandler, localProperties.get)
    progressBar.foreach(_.finishAll())
    rdd.doCheckpoint()
  }

其中调用rdd.doCheckpoint(),doCheckpoint代码如下:

/**
    * Performs the checkpointing of this RDD by saving this. It is called after a job using this RDD
    * has completed (therefore the RDD has been materialized and potentially stored in memory).
    * doCheckpoint() is called recursively on the parent RDDs.
    *
    * checkpointData.get.checkpoint()方法执行具体的写操作,由sc的action触发。如果本身没有checkpoint就根据依赖关系依次往上找。
    */
  private[spark] def doCheckpoint(): Unit = {
    RDDOperationScope.withScope(sc, "checkpoint", allowNesting = false, ignoreParent = true) {
      if (!doCheckpointCalled) {
        doCheckpointCalled = true
        if (checkpointData.isDefined) {
          if (checkpointAllMarkedAncestors) {
            // TODO We can collect all the RDDs that needs to be checkpointed, and then checkpoint
            // them in parallel.
            // Checkpoint parents first because our lineage will be truncated after we
            // checkpoint ourselves
            dependencies.foreach(_.rdd.doCheckpoint())
          }
          checkpointData.get.checkpoint()
        } else {
          dependencies.foreach(_.rdd.doCheckpoint())
        }
      }
    }
  }

其中checkpointData.get.checkpoint执行了最基本的写任务,docheckpoint的任务职能是如果该rdd执行过checkpoint操作,如果是把该RDD的祖先都checkpoint了,那么就根据依赖关系一次checkpoint操作。如果RDD本身没有

调用过checkpoint操作,那么就根据依赖关系一次checkpoint操作。

 

接下来看checkpointData.get.checkpoint的具体实现,其中主要功能在于ReliableCheckpointRDD.writeRDDToCheckpointDirectory(rdd, cpDir)方法。

  /**
    * Materialize this RDD and write its content to a reliable DFS.
    * This is called immediately after the first action invoked on this RDD has completed.
    *
    * writeRDDToCheckpointDirectory方法将RDD写到指定目录
    */
  protected override def doCheckpoint(): CheckpointRDD[T] = {
    val newRDD = ReliableCheckpointRDD.writeRDDToCheckpointDirectory(rdd, cpDir)

    // Optionally clean our checkpoint files if the reference is out of scope
    if (rdd.conf.getBoolean("spark.cleaner.referenceTracking.cleanCheckpoints", false)) {
      rdd.context.cleaner.foreach { cleaner =>
        cleaner.registerRDDCheckpointDataForCleanup(newRDD, rdd.id)
      }
    }

    logInfo(s"Done checkpointing RDD ${rdd.id} to $cpDir, new parent is RDD ${newRDD.id}")
    newRDD
  }

 

以下是ReliableCheckpointRDD.writeRDDToCheckpointDirectory(rdd, cpDir)的方法实现。主要包含两本分,写partition数据和写partitioner。具体如下:

  /**
    * Write RDD to checkpoint files and return a ReliableCheckpointRDD representing the RDD.
    * 写RDD到hdfs,包括partition数据和partitioner数据
    */
  def writeRDDToCheckpointDirectory[T: ClassTag](
                                                  originalRDD: RDD[T],
                                                  checkpointDir: String,
                                                  blockSize: Int = -1): ReliableCheckpointRDD[T] = {

    val sc = originalRDD.sparkContext

    // Create the output path for the checkpoint
    val checkpointDirPath = new Path(checkpointDir)
    val fs = checkpointDirPath.getFileSystem(sc.hadoopConfiguration)
    if (!fs.mkdirs(checkpointDirPath)) {
      throw new SparkException(s"Failed to create checkpoint path $checkpointDirPath")
    }

    // Save to file, and reload it as an RDD
    val broadcastedConf = sc.broadcast(
      new SerializableConfiguration(sc.hadoopConfiguration))
    // TODO: This is expensive because it computes the RDD again unnecessarily (SPARK-8582)
    sc.runJob(originalRDD,
      writePartitionToCheckpointFile[T](checkpointDirPath.toString, broadcastedConf) _)

    if (originalRDD.partitioner.nonEmpty) {
      writePartitionerToCheckpointDir(sc, originalRDD.partitioner.get, checkpointDirPath)
    }

    val newRDD = new ReliableCheckpointRDD[T](
      sc, checkpointDirPath.toString, originalRDD.partitioner)
    if (newRDD.partitions.length != originalRDD.partitions.length) {
      throw new SparkException(
        s"Checkpoint RDD $newRDD(${newRDD.partitions.length}) has different " +
          s"number of partitions from original RDD $originalRDD(${originalRDD.partitions.length})")
    }
    newRDD
  }

写partition数据:

sc.runJob(originalRDD,
      writePartitionToCheckpointFile[T](checkpointDirPath.toString, broadcastedConf) _)
/**
    * Write an RDD partition's data to a checkpoint file.
    */
  def writePartitionToCheckpointFile[T: ClassTag](
                                                   path: String,
                                                   broadcastedConf: Broadcast[SerializableConfiguration],
                                                   blockSize: Int = -1)(ctx: TaskContext, iterator: Iterator[T]) {
    val env = SparkEnv.get
    val outputDir = new Path(path)
    val fs = outputDir.getFileSystem(broadcastedConf.value.value)

    val finalOutputName = ReliableCheckpointRDD.checkpointFileName(ctx.partitionId())
    val finalOutputPath = new Path(outputDir, finalOutputName)
    val tempOutputPath =
      new Path(outputDir, s".$finalOutputName-attempt-${ctx.attemptNumber()}")

    val bufferSize = env.conf.getInt("spark.buffer.size", 65536)

    val fileOutputStream = if (blockSize < 0) {
      fs.create(tempOutputPath, false, bufferSize)
    } else {
      // This is mainly for testing purpose
      fs.create(tempOutputPath, false, bufferSize,
        fs.getDefaultReplication(fs.getWorkingDirectory), blockSize)
    }
    val serializer = env.serializer.newInstance()
    val serializeStream = serializer.serializeStream(fileOutputStream)
    Utils.tryWithSafeFinally {
      serializeStream.writeAll(iterator)
    } {
      serializeStream.close()
    }

    if (!fs.rename(tempOutputPath, finalOutputPath)) {
      if (!fs.exists(finalOutputPath)) {
        logInfo(s"Deleting tempOutputPath $tempOutputPath")
        fs.delete(tempOutputPath, false)
        throw new IOException("Checkpoint failed: failed to save output of task: " +
          s"${ctx.attemptNumber()} and final output path does not exist: $finalOutputPath")
      } else {
        // Some other copy of this task must've finished before us and renamed it
        logInfo(s"Final output path $finalOutputPath already exists; not overwriting it")
        if (!fs.delete(tempOutputPath, false)) {
          logWarning(s"Error deleting ${tempOutputPath}")
        }
      }
    }
  }

111

写partitioner如下:

/**
    * Write a partitioner to the given RDD checkpoint directory. This is done on a best-effort
    * basis; any exception while writing the partitioner is caught, logged and ignored.
    */
  private def writePartitionerToCheckpointDir(
                                               sc: SparkContext, partitioner: Partitioner, checkpointDirPath: Path): Unit = {
    try {
      val partitionerFilePath = new Path(checkpointDirPath, checkpointPartitionerFileName)
      val bufferSize = sc.conf.getInt("spark.buffer.size", 65536)
      val fs = partitionerFilePath.getFileSystem(sc.hadoopConfiguration)
      val fileOutputStream = fs.create(partitionerFilePath, false, bufferSize)
      val serializer = SparkEnv.get.serializer.newInstance()
      val serializeStream = serializer.serializeStream(fileOutputStream)
      Utils.tryWithSafeFinally {
        serializeStream.writeObject(partitioner)
      } {
        serializeStream.close()
      }
      logDebug(s"Written partitioner to $partitionerFilePath")
    } catch {
      case NonFatal(e) =>
        logWarning(s"Error writing partitioner $partitioner to $checkpointDirPath")
    }
  }

 

posted @ 2018-08-14 10:43  天添  阅读(304)  评论(0编辑  收藏  举报