解疑 Numpy 中的 transpose(转置)和swapaxes(两个轴转置变换)
1.一维和二维数据
.T等同于.transopse
2.三维及更多维数据
对于 z 轴 与 x 轴的变换
In [40]: arr = np.arange(16).reshape((2, 2, 4))
In [41]: arr
Out[41]:
array([[[ 0, 1, 2, 3],
[ 4, 5, 6, 7]],
[[ 8, 9, 10, 11],
[12, 13, 14, 15]]])
In [42]: arr.transpose((1, 0, 2))
Out[42]:
array([[[ 0, 1, 2, 3],
[ 8, 9, 10, 11]],
[[ 4, 5, 6, 7],
[12, 13, 14, 15]]])
transpose 的变换是根据 shape 进行的
转换前 shape 是(0, 1, 2)
[[(0,0,0), (0,0,1), (0,0,2), (0,0,3)] // [[[ 0, 1, 2, 3],
[(0,1,0), (0,1,1), (0,1,2), (0,1,3)], // [ 4, 5, 6, 7]],
[(1,0,0), (1,0,1), (1,0,2), (1,0,3)] // [[ 8, 9, 10, 11],
[(1,1,0), (1,1,1), (1,1,2), (1,1,3)]]. //[12, 13, 14, 15]]]
转换后 shape 是(1, 0, 2), 也就是调换位于 z 轴 和 x 轴的shape
[[(0,0,0), (0,0,1), (0,0,2), (0,0,3)]
(1,0,0), (1,0,1), (1,0,2), (1,0,3)],
[(0,1,0), (0,1,1), (0,1,2), (0,1,3)]
[(1,1,0), (1,1,1), (1,1,2), (1,1,3)]]
将转换前 shape 对应的值填进去 得到
[0,1,2,3]
[8,9,10,11]
[4,5,6,7]
[12,13,14,15]
so perfect 刚好对应输出
3.swapaxes(两个轴转置变换)
In [4]: arr2.swapaxes(1,0)#转置,=transpose(1,0,2)
Out[4]:
array([[[ 0, 1, 2, 3],
[ 8, 9, 10, 11]],
[[ 4, 5, 6, 7],
[12, 13, 14, 15]]])