Kafka 消费者

1.Kafka 消费方式

  • pull(拉)模式:
    consumer采用从broker中主动拉取数据。
    Kafka采用这种方式。
  • push(推)模式:
    Kafka没有采用这种方式,因为由broker决定消息发送速率,很难适应所有消费者的消费速率。例如推送的速度是50m/s,Consumer1、Consumer2就来不及处理消息。
    pull模式不足之处是,如 果Kafka没有数据,消费者可能会陷入循环中,一直返回空数据。

2.Kafka 消费者工作流程

1.消费者总体工作流程

  1. 生产者向每一个分区的Leader发送数据(以一批一批的形式发送)
  2. 每一个分区的Follower主动向Leader同步数据,保证数据的可靠性。
  3. 消费者
    • 一个消费者可以消费某一个分区的数据
    • 一个消费者也可以消费多个分区的数据
    • 消费者组-每个分区的数据只能由消费者组中一个消费者消费[注意]
  4. 记录消费的偏移量-offset,每个消费者的offset由消费者提交到Kafka的系统主题中保存[早期的版本保存到Zookeeper中]

2.消费者组原理

1.消费者组

Consumer Group(CG):消费者组,由多个consumer组成。形成一个消费者组的条件,是所有消费者的groupid相同。

  • 消费者组内每个消费者负责消费不同分区的数据,一个分区只能由一个组内消费者消费。

  • 消费者组之间互不影响。所有的消费者都属于某个消费者组,即消费者组是逻辑上的一个订阅者。

  • 如果向消费组中添加更多的消费者,超过主题分区数量,则有一部分消费者就会闲置,不会接收任何消息。

  • 消费者组之间互不影响。所有的消费者都属于某个消费者组,即消费者组是逻辑上的一个订阅者。

2.消费者组初始化流程

coordinator:辅助实现消费者组的初始化和分区的分配。
coordinator节点选择 = groupid的hashcode值 % 50( __consumer_offsets的分区数量)
例如: groupid的hashcode值 = 1,1% 50 = 1,那么__consumer_offsets 主题的1号分区,在哪个broker上,就选择这个节点的coordinator作为这个消费者组的老大。消费者组下的所有的消费者提交offset的时候就往这个分区去提交offset。

  1. 每个consumer都发送JoinGroup请求
  2. 选出一个consumer作为leader
  3. 把要消费的topic情况发送给leader 消费者
  4. leader会负责制定消费方案
  5. 把消费方案发给coordinator
  6. Coordinator就把消费方案下发给各个consumer
  7. 每个消费者都会和coordinator保持心跳(默认3s),一旦超时(session.timeout.ms=45s),该消费者会被移除,并触发再平衡;或者消费者处理消息的时间过长(max.poll.interval.ms5分钟),也会触发再平衡。

3.消费者组详细消费流程

  1. 创建消费者网络连接客户端(用于和Kafka集群交互)
    • Fetch.min.bytes每批次最小抓取大小,默认1字节
    • fetch.max.wait.ms一批数据最小值未达到的超时时间,默认500ms
    • Fetch.max.bytes每批次最大抓取大小,默认50m
  2. 消费者组发送消费请求,通过回调获取数据(存放在队列中)
  3. 消费者从队列中抓取数据
    • Max.poll.records一次拉取数据返回消息的最大条数,默认500条
  4. 反序列化
  5. 拦截器
  6. 处理数据

3.消费者重要参数

参数名称 描述
bootstrap.servers 向 Kafka 集群建立初始连接用到的 host/port 列表
key.deserializer 和 value.deserializer 指定接收消息的 key 和 value 的反序列化类型。一定要写全类名
group.id 标记消费者所属的消费者组
enable.auto.commit 默认值为 true,消费者会自动周期性地向服务器提交偏移量
auto.commit.interval.ms 如果设置了 enable.auto.commit 的值为 true, 则该值定义了消费者偏移量向 Kafka 提交的频率,默认 5s
auto.offset.reset 当 Kafka 中没有初始偏移量或当前偏移量在服务器中不存在(如,数据被删除了),该如何处理? earliest:自动重置偏移量到最早的偏移量。 latest:默认,自动重置偏移量为最新的偏移量。 none:如果消费组原来的(previous)偏移量不存在,则向消费者抛异常。 anything:向消费者抛异常
offsets.topic.num.partitions __consumer_offsets 的分区数,默认是 50 个分区
heartbeat.interval.ms Kafka 消费者和 coordinator 之间的心跳时间,默认 3s。该条目的值必须小于 session.timeout.ms ,也不应该高于session.timeout.ms 的 1/3
session.timeout.ms Kafka 消费者和 coordinator 之间连接超时时间,默认 45s。超过该值,该消费者被移除,消费者组执行再平衡
max.poll.interval.ms 消费者处理消息的最大时长,默认是 5 分钟。超过该值,该消费者被移除,消费者组执行再平衡
fetch.min.bytes 默认 1 个字节。消费者获取服务器端一批消息最小的字节数
fetch.max.wait.ms 默认 500ms。如果没有从服务器端获取到一批数据的最小字节数。该时间到,仍然会返回数据
fetch.max.bytes 默认 Default: 52428800(50 m)。消费者获取服务器端一批消息最大的字节数。如果服务器端一批次的数据大于该值(50m)仍然可以拉取回来这批数据,因此,这不是一个绝对最大值。一批次的大小受 message.max.bytes (broker config)or max.message.bytes (topic config)影响
max.poll.records 一次 poll 拉取数据返回消息的最大条数,默认是 500 条

3.消费者 API

在操作API之前,需要先创建Java的Maven项目,并引入相关的依赖,其中的核心便是kafka-clients

        <dependency>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka-clients</artifactId>
            <version>3.6.1</version>
        </dependency>

注意:在消费者 API 代码中必须配置消费者组 id。命令行启动消费者不填写消费者组id 会被自动填写随机的消费者组 id。

1.独立消费者案例(订阅主题)

创建一个独立消费者,消费 first 主题中数据。

package cn.coreqi.kafka.consumer;

import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.serialization.StringDeserializer;

import java.time.Duration;
import java.util.ArrayList;
import java.util.Properties;

public class CustomConsumer {
    public static void main(String[] args) {
        // 1.创建消费者的配置对象
        Properties properties = new Properties();
        // 2.给消费者配置对象添加参数
        properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.58.130:9092");
        // 配置序列化 必须
        properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
        properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
        // 配置消费者组(组名任意起名) 必须
        properties.put(ConsumerConfig.GROUP_ID_CONFIG, "test");
        // 创建消费者对象
        KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<>(properties);
        // 注册要消费的主题(可以消费多个主题)
        ArrayList<String> topics = new ArrayList<>();
        topics.add("first");
        kafkaConsumer.subscribe(topics);
        // 拉取数据打印
        while (true) {
            // 设置 1s 中消费一批数据
            ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll(Duration.ofSeconds(1));
            // 打印消费到的数据
            for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
                System.out.println(consumerRecord);
            }
        }
    }
}

2.独立消费者案例(订阅分区)

创建一个独立消费者,消费 first 主题 0 号分区的数据。

package cn.coreqi.kafka.consumer;

import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.TopicPartition;
import org.apache.kafka.common.serialization.StringDeserializer;

import java.time.Duration;
import java.util.ArrayList;
import java.util.Properties;

public class CustomConsumerPartition {
    public static void main(String[] args) {
        Properties properties = new Properties();

        properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.58.130:9092");
        
        // 配置序列化 必须
        properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
        properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());

        // 配置消费者组(必须),名字可以任意起
        properties.put(ConsumerConfig.GROUP_ID_CONFIG,"test");
        KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<>(properties);
        
        // 消费某个主题的某个分区数据
        ArrayList<TopicPartition> topicPartitions = new ArrayList<>();
        topicPartitions.add(new TopicPartition("first", 0));
        kafkaConsumer.assign(topicPartitions);
        
        while (true){
            ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll(Duration.ofSeconds(1));
            for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
                System.out.println(consumerRecord);
            }
        }
    }
}

3.消费者组案例

测试同一个主题的分区数据,只能由一个消费者组中的一个消费。
上面的代码拷贝一份,同时启动两个即可。注意消费者组的ID要求一致。

4.生产经验——分区的分配以及再平衡

1、一个consumer group中有多个consumer组成,一个 topic有多个partition组成,现在的问题是,到底由哪个consumer来消费哪个partition的数据。

2、Kafka有四种主流的分区分配策略: Range、RoundRobin、Sticky、CooperativeSticky。可以通过配置参数partition.assignment.strategy,修改分区的分配策略。默认策略是Range + CooperativeSticky。Kafka可以同时使用多个分区分配策略。

参数名称 描述
heartbeat.interval.ms Kafka 消费者和 coordinator 之间的心跳时间,默认 3s。该条目的值必须小于 session.timeout.ms,也不应该高于session.timeout.ms 的 1/3。
session.timeout.ms Kafka 消费者和 coordinator 之间连接超时时间,默认 45s。超过该值,该消费者被移除,消费者组执行再平衡
max.poll.interval.ms 消费者处理消息的最大时长,默认是 5 分钟。超过该值,该消费者被移除,消费者组执行再平衡
partition.assignment.strategy 消费者分区分配策略,默认策略是Range + CooperativeSticky。Kafka 可以同时使用多个分区分配策略。可以选择的策略包括:Range、RoundRobin、Sticky、CooperativeSticky

1.Range 以及再平衡

1.Range 分区策略原理

Range 是对每个 topic 而言的。

首先对同一个 topic 里面的分区按照序号进行排序,并对消费者按照字母顺序进行排序。

假如现在有 7 个分区,3 个消费者,排序后的分区将会是0,1,2,3,4,5,6;消费者排序完之后将会是C0,C1,C2。

通过 partitions数/consumer数 来决定每个消费者应该消费几个分区。如果除不尽,那么前面几个消费者将会多消费 1 个分区。

例如,7/3 = 2 余 1 ,除不尽,那么 消费者 C0 便会多消费 1 个分区。 8/3=2余2,除不尽,那么C0和C1分别多消费一个。

注意:如果只是针对 1 个 topic 而言,C0消费者多消费1个分区影响不是很大。但是如果有 N 多个 topic,那么针对每个 topic,消费者 C0都将多消费 1 个分区,topic越多,C0消费的分区会比其他消费者明显多消费 N 个分区。

容易产生数据倾斜!

2.RoundRobin 以及再平衡

1.RoundRobin 分区策略原理

RoundRobin 针对集群中所有Topic而言。

RoundRobin 轮询分区策略,是把所有的 partition 和所有的consumer 都列出来,然后按照 hashcode 进行排序,最后通过轮询算法来分配 partition 给到各个消费者。

2.RoundRobin 分区分配策略案例【略】

需要注意在消费者API代码中调整分区分配策略

        Properties properties = new Properties();

        properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.58.130:9092");

        // 修改分区分配策略
        properties.put(ConsumerConfig.PARTITION_ASSIGNMENT_STRATEGY_CONFIG, RoundRobinAssignor.class.getName());

3.Sticky 以及再平衡

1.Sticky 分区策略原理

粘性分区定义:可以理解为分配的结果带有“粘性的”。即在执行一次新的分配之前,考虑上一次分配的结果,尽量少的调整分配的变动,可以节省大量的开销。

粘性分区是 Kafka 从 0.11.x 版本开始引入这种分配策略,首先会尽量均衡的放置分区到消费者上面,在出现同一消费者组内消费者出现问题的时候,会尽量保持原有分配的分区不变化。

2.Sticky 分区分配策略案例【略】

需要注意在消费者API代码中调整分区分配策略

        Properties properties = new Properties();

        properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.58.130:9092");

        // 修改分区分配策略
        ArrayList<String> startegys = new ArrayList<>();
        startegys.add(StickyAssignor.class.getName());
        properties.put(ConsumerConfig.PARTITION_ASSIGNMENT_STRATEGY_CONFIG, startegys);

5.offset 位移

1.offset 的默认维护位置

Kafka0.9版本之前,consumer默认将offset保存在Zookeeper中

从0.9版本开始,consumer默认将offset保存在Kafka一个内置的topic中,该topic为__consumer_offsets

__consumer_offsets 主题里面采用 key 和 value 的方式存储数据。key 是 group.id+topic+分区号,value 就是当前 offset 的值。每隔一段时间,kafka 内部会对这个 topic 进行compact[日志压缩],也就是每个 group.id+topic+分区号就保留最新数据。

1.消费 offset 案例

1.在配置文件 config/consumer.properties 中添加配置 exclude.internal.topics=false,默认是 true,表示不能消费系统主题。为了查看该系统主题数据,所以该参数修改为 false。
2.查看消费者消费主题__consumer_offsets
bin/kafka-console-consumer.sh --topic __consumer_offsets --bootstrap-server 192.168.58.130:9092 --consumer.config config/consumer.properties --formatter "kafka.coordinator.group.GroupMetadataManager\$OffsetsMessageFormatter" --from-beginning

2.自动提交 offset

为了使我们能够专注于自己的业务逻辑,Kafka提供了自动提交offset的功能。

自动提交offset的相关参数:

  • enable.auto.commit:是否开启自动提交offset功能,默认是true
  • auto.commit.interval.ms:自动提交offset的时间间隔,默认是5s
参数名称 描述
enable.auto.commit 默认值为 true,消费者会自动周期性地向服务器提交偏移量。
auto.commit.interval.ms 如果设置了 enable.auto.commit 的值为 true, 则该值定义了消费者偏移量向 Kafka 提交的频率,默认 5s。
package cn.coreqi.kafka.consumer;

import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.serialization.StringDeserializer;

import java.time.Duration;
import java.util.Arrays;
import java.util.Properties;

public class CustomConsumerAutoOffset {
    public static void main(String[] args) {
        // 1. 创建 kafka 消费者配置类
        Properties properties = new Properties();

        // 2. 添加配置参数
        // 添加连接
        properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.58.130:9092");

        // 配置序列化 必须
        properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
        properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());

        // 配置消费者组
        properties.put(ConsumerConfig.GROUP_ID_CONFIG, "test");

        // 是否自动提交 offset
        properties.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, true);

        // 提交 offset 的时间周期 1000ms,默认 5s
        properties.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, 1000);

        //3. 创建 kafka 消费者
        KafkaConsumer<String, String> consumer = new KafkaConsumer<>(properties);

        //4. 设置消费主题 形参是列表
        consumer.subscribe(Arrays.asList("first"));

        //5. 消费数据
        while (true) {
            // 读取消息
            ConsumerRecords<String, String> consumerRecords = consumer.poll(Duration.ofSeconds(1));
            // 输出消息
            for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
                System.out.println(consumerRecord.value());
            }
        }
    }
}

3.手动提交 offset

虽然自动提交offset十分简单便利,但由于其是基于时间提交的,开发人员难以把握offset提交的时机。因此Kafka还提供了手动提交offset的API。

手动提交offset的方法有两种:分别是commitSync(同步提交)和commitAsync(异步提交)。两者的相同点是,都会将本次提交的一批数据最高的偏移量提交;不同点是,同步提交阻塞当前线程,一直到提交成功,并且会自动失败重试(由不可控因素导致,也会出现提交失败);而异步提交则没有失败重试机制,故有可能提交失败。

  • commitSync(同步提交):必须等待offset提交完毕,再去消费下一批数据。
  • commitAsync(异步提交) :发送完提交offset请求后,就开始消费下一批数据了。

1.同步提交 offset

由于同步提交 offset 有失败重试机制,故更加可靠,但是由于一直等待提交结果,提交的效率比较低。

package cn.coreqi.kafka.consumer;

import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.serialization.StringDeserializer;

import java.time.Duration;
import java.util.Arrays;
import java.util.Properties;

public class CustomConsumerByHandSync {
    public static void main(String[] args) {
        // 1. 创建 kafka 消费者配置类
        Properties properties = new Properties();
        // 2. 添加配置参数
        // 添加连接
        properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.58.130:9092");
        // 配置序列化 必须
        properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
        properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());

        // 配置消费者组
        properties.put(ConsumerConfig.GROUP_ID_CONFIG, "test");
        // 是否自动提交 offset
        properties.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, false);
        //3. 创建 kafka 消费者
        KafkaConsumer<String, String> consumer = new KafkaConsumer<>(properties);
        //4. 设置消费主题 形参是列表
        consumer.subscribe(Arrays.asList("first"));
        //5. 消费数据
        while (true){
            // 读取消息
            ConsumerRecords<String, String> consumerRecords = consumer.poll(Duration.ofSeconds(1));
            // 输出消息
            for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
                System.out.println(consumerRecord.value());
            }
            // 同步提交 offset
            consumer.commitSync();
        }
    }
}

2.异步提交 offset

虽然同步提交 offset 更可靠一些,但是由于其会阻塞当前线程,直到提交成功。因此吞吐量会受到很大的影响。因此更多的情况下,会选用异步提交 offset 的方式。

package cn.coreqi.kafka.consumer;

import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.serialization.StringDeserializer;

import java.time.Duration;
import java.util.Arrays;
import java.util.Properties;

public class CustomConsumerByHandAsync {
    public static void main(String[] args) {
        // 1. 创建 kafka 消费者配置类
        Properties properties = new Properties();
        // 2. 添加配置参数
        // 添加连接
        properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.58.130:9092");
        // 配置序列化 必须
        properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
        properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());

        // 配置消费者组
        properties.put(ConsumerConfig.GROUP_ID_CONFIG, "test");
        // 是否自动提交 offset
        properties.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "false");
        //3. 创建 Kafka 消费者
        KafkaConsumer<String, String> consumer = new KafkaConsumer<>(properties);
        //4. 设置消费主题 形参是列表
        consumer.subscribe(Arrays.asList("first"));
        //5. 消费数据
        while (true){
            // 读取消息
            ConsumerRecords<String, String> consumerRecords = consumer.poll(Duration.ofSeconds(1));
            // 输出消息
            for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
                System.out.println(consumerRecord.value());
            }
            // 异步提交 offset
            consumer.commitAsync();
        }
    }
}

4.指定 Offset 消费

auto.offset.reset = earliest | latest | none 默认是 latest。

当 Kafka 中没有初始偏移量(消费者组第一次消费)或服务器上不再存在当前偏移量时(例如该数据已被删除),该怎么办?

  • earliest:自动将偏移量重置为最早的偏移量,--from-beginning。

  • latest(默认值):自动将偏移量重置为最新偏移量。

  • none:如果未找到消费者组的先前偏移量,则向消费者抛出异常。

  • 指定任意 offset 位移开始消费

package cn.coreqi.kafka.consumer;

import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.TopicPartition;
import org.apache.kafka.common.serialization.StringDeserializer;

import java.time.Duration;
import java.util.*;

public class CustomConsumerSeek {
    public static void main(String[] args) {
        // 0 配置信息
        Properties properties = new Properties();
        // 连接
        properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.58.130:9092");

        // key value 反序列化
        properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
        properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());

        properties.put(ConsumerConfig.GROUP_ID_CONFIG, "test2");
        // 1 创建一个消费者
        KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<>(properties);

        // 2 订阅一个主题
        ArrayList<String> topics = new ArrayList<>();
        topics.add("first");
        kafkaConsumer.subscribe(topics);

        Set<TopicPartition> assignment= new HashSet<>();
        while (assignment.size() == 0) {
            kafkaConsumer.poll(Duration.ofSeconds(1));
            // 获取消费者分区分配信息(有了分区分配信息才能开始消费)
            assignment = kafkaConsumer.assignment();
        }

        // 遍历所有分区,并指定 offset 从 1700 的位置开始消费
        for (TopicPartition tp: assignment) {
            kafkaConsumer.seek(tp, 1700);
        }

        // 3 消费该主题数据
        while (true) {
            ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll(Duration.ofSeconds(1));
            for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
                System.out.println(consumerRecord);
            }
        }
    }
}

注意:每次执行完,需要修改消费者组名;

5.指定时间消费

在生产环境中,会遇到最近消费的几个小时数据异常,想重新按照时间消费。例如要求按照时间消费前一天的数据,怎么处理?

package cn.coreqi.kafka.consumer;

import org.apache.kafka.clients.consumer.*;
import org.apache.kafka.common.TopicPartition;
import org.apache.kafka.common.serialization.StringDeserializer;

import java.time.Duration;
import java.util.*;

public class CustomConsumerForTime {
    public static void main(String[] args) {
        // 0 配置信息
        Properties properties = new Properties();
        // 连接
        properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.58.130:9092");

        // key value 反序列化
        properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
        properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());

        properties.put(ConsumerConfig.GROUP_ID_CONFIG, "test2");
        // 1 创建一个消费者
        KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<>(properties);
        // 2 订阅一个主题
        ArrayList<String> topics = new ArrayList<>();
        topics.add("first");
        kafkaConsumer.subscribe(topics);

        Set<TopicPartition> assignment = new HashSet<>();
        while (assignment.size() == 0) {
            kafkaConsumer.poll(Duration.ofSeconds(1));
            // 获取消费者分区分配信息(有了分区分配信息才能开始消费)
            assignment = kafkaConsumer.assignment();
        }
        HashMap<TopicPartition, Long> timestampToSearch = new HashMap<>();
        // 封装集合存储,每个分区对应一天前的数据
        for (TopicPartition topicPartition : assignment) {
            timestampToSearch.put(topicPartition,
                    System.currentTimeMillis() - 1 * 24 * 3600 * 1000);
        }
        // 获取从 1 天前开始消费的每个分区的 offset
        Map<TopicPartition, OffsetAndTimestamp> offsets =
                kafkaConsumer.offsetsForTimes(timestampToSearch);
        // 遍历每个分区,对每个分区设置消费时间。
        for (TopicPartition topicPartition : assignment) {
            OffsetAndTimestamp offsetAndTimestamp = offsets.get(topicPartition);
            // 根据时间指定开始消费的位置
            if (offsetAndTimestamp != null) {
                kafkaConsumer.seek(topicPartition, offsetAndTimestamp.offset());
            }
        }
        // 3 消费该主题数据
        while (true) {
            ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll(Duration.ofSeconds(1));
            for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
                System.out.println(consumerRecord);
            }
        }
    }
}

6.漏消费和重复消费

重复消费:已经消费了数据,但是 offset 没提交。

漏消费:先提交 offset 后消费,有可能会造成数据的漏消费。

  • 重复消费。自动提交offset引起。

    1. Consumer每5s提交offset
    2. 如果提交offset后的2s,consumer挂了
    3. 再次重启consumer,则从上一次提交的offset处继续消费,导致重复消费
  • 漏消费。设置offset为手动提交,当offset被提交时,数据还在内存中未落盘,此时刚好消费者线程被kill掉,那么offset已经提交,但是数据未处理,导致这部分内存中的数据丢失。

    1. 提交offset
    2. 消费者消费的数据还在内存中,消费者挂掉,导致漏消费

可以通过消费者事务解决既不漏消费也不重复消费的问题。

6. 生产经验——消费者事务

如果想完成Consumer端的精准一次性消费,那么需要Kafka消费端将消费过程和提交offset过程做原子绑定。此时我们需要将Kafka的offset保存到支持事务的自定义介质(比如MySQL)。

下游消费者必须支持事务,才能做到精确一次性消费

7.生产经验——数据积压(消费者如何提高吞吐量)

  1. 如果是Kafka消费能力不足,则可以考虑增加Topic的分区数,并且同时提升消费组的消费者数量,消费者数 = 分区数。(两者缺一不可)
  2. 如果是下游的数据处理不及时:提高每批次拉取的数量。批次拉取数据过少(拉取数据/处理时间 < 生产速度),使处理的数据小于生产的数据,也会造成数据积压。
参数名称 描述
fetch.max.bytes 默认 Default: 52428800(50 m)。消费者获取服务器端一批消息最大的字节数。如果服务器端一批次的数据大于该值(50m)仍然可以拉取回来这批数据,因此,这不是一个绝对最大值。一批次的大小受 message.max.bytes (broker config)or max.message.bytes (topic config)影响。
max.poll.records 一次 poll 拉取数据返回消息的最大条数,默认是 500 条
posted @ 2024-02-19 12:49  SpringCore  阅读(648)  评论(0编辑  收藏  举报