Kafka 生产者
1.生产者消息发送流程
1.发送原理
在消息发送的过程中,涉及到了两个线程——main 线程和 Sender 线程。在 main 线程中创建了一个双端队列 RecordAccumulator。main 线程将消息发送给 RecordAccumulator,Sender 线程不断从 RecordAccumulator 中拉取消息发送到 Kafka Broker。
2.生产者重要参数列表
参数名称 | 描述 |
---|---|
bootstrap.servers | 生产者连接集群所需的 broker 地 址 清 单 。 例 如192.168.58.130:9092,192.168.58.131:9092,192.168.58.132:9092,可以设置 1 个或者多个,中间用逗号隔开。注意这里并非需要所有的 broker 地址,因为生产者从给定的 broker里查找到其他 broker 信息 |
key.serializer 和 value.serializer | 指定发送消息的 key 和 value 的序列化类型。一定要写全类名 |
buffer.memory | RecordAccumulator 缓冲区总大小,默认 32m |
batch.size | 缓冲区一批数据最大值,默认 16k。适当增加该值,可以提高吞吐量,但是如果该值设置太大,会导致数据传输延迟增加 |
linger.ms | 如果数据迟迟未达到 batch.size,sender 等待 linger.time之后就会发送数据。单位 ms,默认值是 0ms,表示没有延迟。生产环境建议该值大小为 5-100ms 之间 |
acks | 0:生产者发送过来的数据,不需要等数据落盘应答。 1:生产者发送过来的数据,Leader 收到数据后应答。 -1(all):生产者发送过来的数据,Leader+和 isr 队列里面的所有节点收齐数据后应答。 默认值是-1,-1 和all 是等价的 |
max.in.flight.requests.per.connection | 允许最多没有返回 ack 的次数,默认为 5,开启幂等性要保证该值是 1-5 的数字 |
retries | 当消息发送出现错误的时候,系统会重发消息。retries表示重试次数。默认是 int 最大值,2147483647。如果设置了重试,还想保证消息的有序性,需要设置MAX_IN_FLIGHT_REQUESTS_PER_CONNECTION=1否则在重试此失败消息的时候,其他的消息可能发送成功了。 |
retry.backoff.ms | 两次重试之间的时间间隔,默认是 100ms |
enable.idempotence | 是否开启幂等性,默认 true,开启幂等性 |
compression.type | 生产者发送的所有数据的压缩方式。默认是 none,也就是不压缩。 支持压缩类型:none、gzip、snappy、lz4 和 zstd。 |
2.发送API
在操作API之前,需要先创建Java的Maven项目,并引入相关的依赖,其中的核心便是kafka-clients
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-clients</artifactId>
<version>3.6.1</version>
</dependency>
1.异步发送 API
1.普通异步发送
package cn.coreqi.kafka.producer;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import java.util.Properties;
public class CustomProducer {
public static void main(String[] args) {
// 1. 创建 kafka 生产者的配置对象
Properties properties = new Properties();
// 2. 给 kafka 配置对象添加配置信息:bootstrap.servers
properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.58.130:9092");
// key,value 序列化(必须):key.serializer,value.serializer
properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
"org.apache.kafka.common.serialization.StringSerializer");
properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
"org.apache.kafka.common.serialization.StringSerializer");
// 3. 创建 kafka 生产者对象
KafkaProducer<String, String> kafkaProducer = new KafkaProducer<>(properties);
// 4. 调用 send 方法,发送消息
for (int i = 0; i < 5; i++) {
kafkaProducer.send(new ProducerRecord<>("first","coreqi " + i));
}
// 5. 关闭资源
kafkaProducer.close();
}
}
2.带回调函数的异步发送
回调函数会在 producer 收到 ack 时调用,为异步调用,该方法有两个参数,分别是元数据信息(RecordMetadata)和异常信息(Exception),如果 Exception 为 null,说明消息发送成功,如果 Exception 不为 null,说明消息发送失败。
注意:消息发送失败会自动重试,不需要我们在回调函数中手动重试。
package cn.coreqi.kafka.producer;
import org.apache.kafka.clients.producer.*;
import org.apache.kafka.common.serialization.StringSerializer;
import java.util.Properties;
public class CustomProducerCallback {
public static void main(String[] args) throws InterruptedException {
// 1. 创建 kafka 生产者的配置对象
Properties properties = new Properties();
// 2. 给 kafka 配置对象添加配置信息
properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.58.130:9092");
// key,value 序列化(必须):key.serializer,value.serializer
properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
StringSerializer.class.getName());
properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
StringSerializer.class.getName());
// 3. 创建 kafka 生产者对象
KafkaProducer<String, String> kafkaProducer = new KafkaProducer<>(properties);
// 4. 调用 send 方法,发送消息
for (int i = 0; i < 5; i++) {
// 添加回调
kafkaProducer.send(new ProducerRecord<>("first", "coreqi " + i), new Callback() {
// 该方法在 Producer 收到 ack 时调用,为异步调用
@Override
public void onCompletion(RecordMetadata metadata, Exception exception) {
if (exception == null) {
// 没有异常,输出信息到控制台
System.out.println(" 主题: " +
metadata.topic() + "->" + "分区:" + metadata.partition());
} else {
// 出现异常打印
exception.printStackTrace();
}
}
});
// 延迟一会会看到数据发往不同分区
Thread.sleep(2);
}
// 5. 关闭资源
kafkaProducer.close();
}
}
2.同步发送 API
只需在异步发送的基础上,再调用一下 get()方法即可。
package cn.coreqi.kafka.producer;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.serialization.StringSerializer;
import java.util.Properties;
import java.util.concurrent.ExecutionException;
public class CustomProducerSync {
public static void main(String[] args) throws ExecutionException, InterruptedException {
// 1. 创建 kafka 生产者的配置对象
Properties properties = new Properties();
// 2. 给 kafka 配置对象添加配置信息
properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.58.130:9092");
// key,value 序列化(必须):key.serializer,value.serializer
properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
StringSerializer.class.getName());
properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
StringSerializer.class.getName());
// 3. 创建 kafka 生产者对象
KafkaProducer<String, String> kafkaProducer = new KafkaProducer<>(properties);
// 4. 调用 send 方法,发送消息
for (int i = 0; i < 10; i++) {
// 异步发送 默认
// kafkaProducer.send(new ProducerRecord<>("first","kafka" + i));
// 同步发送
kafkaProducer.send(new ProducerRecord<>("first","kafka" + i)).get();
}
// 5. 关闭资源
kafkaProducer.close();
}
}
3.生产者分区
1.分区好处
- 便于合理使用存储资源,每个Partition在一个Broker上存储,可以把海量的数据按照分区切割成一块一块数据存储在多台Broker上。合理控制分区的任务,可以实现负载均衡的效果。
- 提高并行度,生产者可以以分区为单位发送数据;消费者可以以分区为单位进行消费数据。
2.生产者发送消息的分区策略
- 指明partition的情况下,直接将指明的值作为partition值;例如partition=0,所有数据写入分区0
- 没有指明partition值但有key的情况下,将key的hash值与topic的partition数进行取余得到partition值;例如:key1的hash值=5, key2的hash值=6 ,topic的partition数=2,那么key1 对应的value1写入1号分区,key2对应的value2写入0号分区。
- 既没有partition值又没有key值的情况下,Kafka采用Sticky Partition(黏性分区器),会随机选择一个分区,并尽可能一直使用该分区,待该分区的batch已满或者已完成,Kafka再随机一个分区进行使用(和上一次的分区不同)。例如:第一次随机选择0号分区,等0号分区当前批次满了(默认16k)或者linger.ms设置的时间到, Kafka再随机一个分区进行使用(如果还是0会继续随机)。
默认的分区器 DefaultPartitioner
// 指定数据发送到 1 号分区,key 为空(IDEA 中 ctrl + p 查看参数)
kafkaProducer.send(new ProducerRecord<>("first", 1,"","coreqi " + i), new Callback() {
@Override
public void onCompletion(RecordMetadata metadata, Exception e) {
if (e == null){
System.out.println(" 主题: " +
metadata.topic() + "->" + "分区:" + metadata.partition()
);
}else {
e.printStackTrace();
}
}
});
// 依次指定 key 值为 a,b,f ,数据 key 的 hash 值与 3 个分区求余,分别发往 1、2、0
kafkaProducer.send(new ProducerRecord<>("first", "a","coreqi " + i), new Callback() {
@Override
public void onCompletion(RecordMetadata metadata, Exception e) {
if (e == null){
System.out.println(" 主题: " +
metadata.topic() + "->" + "分区:" + metadata.partition()
);
}else {
e.printStackTrace();
}
}
});
3.自定义分区器
自定义一个分区器实现,发送过来的数据中如果包含 coreqi,就发往 0 号分区,不包含则发往 1 号分区。
1.定义类实现 Partitioner 接口,重写 partition()方法
package cn.coreqi.kafka.partitioner;
import org.apache.kafka.clients.producer.Partitioner;
import org.apache.kafka.common.Cluster;
import java.util.Map;
/**
* 1. 实现接口 Partitioner
* 2. 实现 3 个方法:partition,close,configure
* 3. 编写 partition 方法,返回分区号
*/
public class MyPartitioner implements Partitioner {
/**
* 返回信息对应的分区
* @param topic 主题
* @param key 消息的 key
* @param keyBytes 消息的 key 序列化后的字节数组
* @param value 消息的 value
* @param valueBytes 消息的 value 序列化后的字节数组
* @param cluster 集群元数据可以查看分区信息
* @return
*/
@Override
public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {
// 获取消息
String msgValue = value.toString();
// 判断消息是否包含 coreqi 返回分区号
return msgValue.contains("coreqi") ? 0 : 1;
}
// 关闭资源
@Override
public void close() {
}
// 配置方法
@Override
public void configure(Map<String, ?> configs) {
}
}
2.在生产者的配置中添加分区器参数
package cn.coreqi.kafka.producer;
import cn.coreqi.kafka.partitioner.MyPartitioner;
import org.apache.kafka.clients.producer.*;
import org.apache.kafka.common.serialization.StringSerializer;
import java.util.Properties;
public class CustomProducerCallbackPartitions {
public static void main(String[] args) {
Properties properties = new Properties();
properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.58.130:9092");
properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
// 添加自定义分区器
properties.put(ProducerConfig.PARTITIONER_CLASS_CONFIG, MyPartitioner.class.getName());
KafkaProducer<String, String> kafkaProducer = new KafkaProducer<>(properties);
for (int i = 0; i < 5; i++) {
kafkaProducer.send(new ProducerRecord<>("first", "coreqi " + i), new Callback() {
@Override
public void onCompletion(RecordMetadata metadata, Exception e) {
if (e == null) {
System.out.println(" 主题: " +
metadata.topic() + "->" + "分区:" + metadata.partition());
} else {
e.printStackTrace();
}
}
});
}
kafkaProducer.close();
}
}
4.生产经验——生产者如何提高吞吐量
- batch.size:批次大小,默认16k
- linger.ms:等待时间,修改为5-100ms
- compression.type:压缩snappy
- RecordAccumulator:缓冲区大小,修改为64m
package cn.coreqi.kafka.producer;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.serialization.StringSerializer;
import java.util.Properties;
public class CustomProducerParameters {
public static void main(String[] args) {
// 1. 创建 kafka 生产者的配置对象
Properties properties = new Properties();
// 2. 给 kafka 配置对象添加配置信息:bootstrap.servers
properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.58.130:9092");
// key,value 序列化(必须):key.serializer,value.serializer
properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());
// batch.size:批次大小,默认 16K
properties.put(ProducerConfig.BATCH_SIZE_CONFIG, 16384);
// linger.ms:等待时间,默认 0
properties.put(ProducerConfig.LINGER_MS_CONFIG, 1);
// RecordAccumulator:缓冲区大小,默认 32M:buffer.memory
properties.put(ProducerConfig.BUFFER_MEMORY_CONFIG, 33554432);
// compression.type:压缩,默认 none,可配置值 gzip、snappy、lz4 和 zstd
properties.put(ProducerConfig.COMPRESSION_TYPE_CONFIG,"snappy");
// 3. 创建 kafka 生产者对象
KafkaProducer<String, String> kafkaProducer = new KafkaProducer<>(properties);
// 4. 调用 send 方法,发送消息
for (int i = 0; i < 5; i++) {
kafkaProducer.send(new ProducerRecord<>("first","coreqi " + i));
}
// 5. 关闭资源
kafkaProducer.close();
}
}
5.生产经验——数据可靠性
1.ACK应答级别
- 0:生产者发送过来的数据,不需要等数据落盘应答
数据可靠性分析:丢数 - 1:生产者发送过来的数据,Leader收到数据后应答。
数据可靠性分析:丢数 - -1(all):生产者发送过来的数据,Leader和ISR队列里面的所有节点收齐数据后应答。
Leader维护了一个动态的in-sync replica set(ISR),意为和Leader保持同步的Follower+Leader集合(leader:0,isr:0,1,2)。
如果Follower长时间未向Leader发送通信请求或同步数据,则该Follower将被踢出ISR。该时间阈值由replica.lag.time.max.ms参数设定,默认30s。例如2超时,(leader:0, isr:0,1)。
数据可靠性分析:如果分区副本设置为1个,或 者ISR里应答的最小副本数量( min.insync.replicas 默认为1)设置为1,和ack=1的效果是一样的,仍然有丢数的风险(leader:0,isr:0)。
数据完全可靠条件 = ACK级别设置为-1 + 分区副本大于等于2 + ISR里应答的最小副本数量大于等于2
2.总结
1.可靠性总结
- acks=0,生产者发送过来数据就不管了,可靠性差,效率高;
- acks=1,生产者发送过来数据Leader应答,可靠性中等,效率中等;
- acks=-1,生产者发送过来数据Leader和ISR队列里面所有Follwer应答,可靠性高,效率低;
在生产环境中,acks=0很少使用;acks=1,一般用于传输普通日志,允许丢个别数据;acks=-1,一般用于传输和钱相关的数据,对可靠性要求比较高的场景。
2.数据重复分析
acks: -1(all):生产者发送过来的数据,Leader和ISR队列里面的所有节点收齐数据后应答,极小概率会产生数据重复的问题。
3.代码参数配置
package cn.coreqi.kafka.producer;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.serialization.StringSerializer;
import java.util.Properties;
public class CustomProducerAck {
public static void main(String[] args) {
// 1. 创建 kafka 生产者的配置对象
Properties properties = new Properties();
// 2. 给 kafka 配置对象添加配置信息:bootstrap.servers
properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.58.130:9092");
// key,value 序列化(必须):key.serializer,value.serializer
properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
// 设置 acks
properties.put(ProducerConfig.ACKS_CONFIG, "all");
// 重试次数 retries,默认是 int 最大值,2147483647
properties.put(ProducerConfig.RETRIES_CONFIG, 3);
// 3. 创建 kafka 生产者对象
KafkaProducer<String, String> kafkaProducer = new KafkaProducer<>(properties);
// 4. 调用 send 方法,发送消息
for (int i = 0; i < 5; i++) {
kafkaProducer.send(new ProducerRecord<>("first", "coreqi " + i));
}
// 5. 关闭资源
kafkaProducer.close();
}
}
6.生产经验——数据去重
1.数据传递语义
- 至少一次(At Least Once)= ACK级别设置为-1 + 分区副本大于等于2 + ISR里应答的最小副本数量大于等于2
- 最多一次(At Most Once)= ACK级别设置为0
- 总结:
- 至少一次(At Least Once)可以保证数据不丢失,但是不能保证数据不重复;
- 最多一次(At Most Once)可以保证数据不重复,但是不能保证数据不丢失。
- 精确一次(Exactly Once):对于一些非常重要的信息,比如和钱相关的数据,要求数据既不能重复也不丢失。
Kafka 0.11版本以后,引入了一项重大特性:幂等性和事务。
2.幂等性
1.幂等性原理
幂等性就是指Producer不论向Broker发送多少次重复数据,Broker端都只会持久化一条,保证了不重复。
精确一次(Exactly Once) = 幂等性 + 至少一次( ack=-1 + 分区副本数>=2 + ISR最小副本数量>=2)
重复数据的判断标准:具有<PID, Partition, SeqNumber>相同主键的消息提时,Broker只会持久化一条。其中PID是Kafka每次重启都会分配一个新的;Partition 表示分区号;Sequence Number是单调自增的。
所以幂等性只能保证的是在单分区单会话内不重复
。
2.配置使用幂等性
开启参数 enable.idempotence 默认为 true,false 关闭。
3.生产者事务
1.Kafka 事务说明
说明:
- 开启事务,必须开启幂等性(事务的底层依赖于幂等性)。
- Producer 在使用事务功能前,
必须先自定义一个唯一的 transactional.id
。有了 transactional.id,即使客户端挂掉了,它重启后也能继续处理未完成的事务。
2.事务API
// 1 初始化事务
void initTransactions();
// 2 开启事务
void beginTransaction() throws ProducerFencedException;
// 3 在事务内提交已经消费的偏移量(主要用于消费者)
void sendOffsetsToTransaction(Map<TopicPartition,OffsetAndMetadata> offsets, String consumerGroupId) throws ProducerFencedException;
// 4 提交事务
void commitTransaction() throws ProducerFencedException;
// 5 放弃事务(类似于回滚事务的操作)
void abortTransaction() throws ProducerFencedException;
3.代码演示
package cn.coreqi.kafka.producer;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.serialization.StringSerializer;
import java.util.Properties;
public class CustomProducerTransactions {
public static void main(String[] args) {
// 1. 创建 kafka 生产者的配置对象
Properties properties = new Properties();
// 2. 给 kafka 配置对象添加配置信息
properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.58.130:9092");
// key,value 序列化
properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
// 设置事务 id(必须),事务 id 任意起名
properties.put(ProducerConfig.TRANSACTIONAL_ID_CONFIG, "transaction_id_0");
// 3. 创建 kafka 生产者对象
KafkaProducer<String, String> kafkaProducer = new KafkaProducer<>(properties);
// 初始化事务
kafkaProducer.initTransactions();
// 开启事务
kafkaProducer.beginTransaction();
try {
// 4. 调用 send 方法,发送消息
for (int i = 0; i < 5; i++) {
// 发送消息
kafkaProducer.send(new ProducerRecord<>("first", "coreqi " + i));
}
// 提交事务
kafkaProducer.commitTransaction();
} catch (Exception e) {
// 终止事务
kafkaProducer.abortTransaction();
} finally {
// 5. 关闭资源
kafkaProducer.close();
}
}
}
7.生产经验——数据有序
- 单分区内,通过配置可以达到有序
- 多分区,分区与分区间无序,可以在消费端进行重排序达到有序的效果。
8.生产经验——数据乱序
-
kafka在1.x版本之前保证数据单分区有序,条件如下:
max.in.flight.requests.per.connection=1(不需要考虑是否开启幂等性),通过此配置限定缓存队列中最多只能放一个请求。 -
kafka在1.x及以后版本保证数据单分区有序,条件如下:
- 未开启幂等性
max.in.flight.requests.per.connection需要设置为1。 - 开启幂等性
max.in.flight.requests.per.connection需要设置小于等于5。
原因说明:因为在kafka1.x以后,启用幂等后,kafka服务端会缓存producer发来的最近5个request的元数据,故无论如何,都可以保证最近5个request的数据都是有序的。
- 未开启幂等性