二项分布

定义

20201116000339

二项分布的期望和方差

期望

\[EX = np \]

证明

\(X \sim B(n,p)\), 求 \(EX\).

\[EX = \sum_{K = 0}^{n}x_kp_k = \sum_{k = 0}^{n}kC_n^kp^k(1 - p)^{n - k} = \sum_{k = 1}^{n}k\displaystyle\frac{n!}{k!(n - k)!}p^k(1 - p)^{n - k} \]

\[= np\sum_{k = 1}^{n}C_{n - 1}^{k - 1}p^{k - 1}(1 - p)^{n - k} = np\sum_{k = 0}^{n - 1}C_{n - 1}^kp^k(1 - p)^{n - 1 - k} \]

\[= np[p + (1 - p)]^{n - 1} = np, \qquad\qquad\qquad\qquad\qquad\qquad\quad \]

\(EX = np\).

方差

\[DX = np(1 - p) \]

证明

\(X \sim B(n, p)\), 求 \(DX\).

\[EX^2 = \sum_{k = 0}^{n}x_k^2p_k = \sum_{k = 0}^{n}k^2C_n^kp^k(1 - p)^{n - k} = \sum_{k = 1}^{n}k\displaystyle\frac{n!}{(k - 1)!(n - k)!}p^k(1 -p)^{n - k} \]

\[= \sum_{k = 1}^{n}(k - 1)\displaystyle\frac{n!}{(k - 1)!(n - k)!}p^k(1 - p)^{n - k} + \sum_{k = 1}^{n}\displaystyle\frac{n!}{(k - 1)!(n - k)!}p^k(1 - p)^{n - k} \]

\[= np[(n - 1)p + 1], \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad \]

\(1 - p = q\), 由 \(DX = EX^2 - (EX)^2\) 可得

\[DX = npq. \]

posted @ 2020-11-16 00:36  模糊计算士  阅读(754)  评论(0编辑  收藏  举报