kafka rocketMq零拷贝对比

https://cloud.tencent.com/developer/news/333695

还有Linux目录下的基本原理

RocketMQ Kafka Consumer消费消息过程,使用了零拷贝,零拷贝包含以下两种方式

1. 使用 mmap + write 方式

RocketMQ 选择了这种方式,mmap+write 方式,因为有小块数据传输的需求,效果会比 sendfile 更好。但是RocketMQ控制mmap映射的内存分配与释放的地方非常复杂,稍有不慎就会出问题。

优点:即使频繁调用,使用小块文件传输,效率也很高。

缺点:不能很好的利用 DMA 方式,会比 sendfile 多消耗 CPU,内存安全性控制复杂,需要避免 JVM Crash问题。

2. 使用 sendfile 方式

优点:可以利用 DMA 方式,消耗 CPU 较少,大块文件传输效率高,无内存安全性问题。

缺点:小块文件效率低于 mmap 方式,只能是 BIO 方式传输,不能使用 NIO。

sendfile:FileChannel.transferTo()只有源为FileChannel才支持transfer这种高效的复制方式,其他如SocketChannel都不支持transfer模式。当然,目的Channel没有这种限制。所以一般可以做FileChannel->FileChannel和FileChannel->SocketChannel的transfer。

KAFKA的索引文件使用mmap+write 方式,data文件使用sendfile 。

下面这个问题就是RocketMQ使用mmap后的潜在问题:

 

下面是详细介绍这两种零拷贝方式:

mmap 文件映射

通常情况下,我们可以使用和去访问文件,除此之外,Linux 还提供了系统调用,它可以将文件映射到进程的地址空间,这样程序就可以通过访问内存的方式去访问文件了。那么与和相比,使用去访问文件能带来什么好处呢?

使用一个明显的好处就是减少一次 I/O 拷贝,譬如说,当我们使用读取文件时,通常的做法是这样:

这个过程实际上发生了两次 I/O 拷贝,第一次是将磁盘中的文件内容拷贝到 OS 的文件系统缓冲区,第二次是将 OS 缓冲区的数据拷贝到用户缓冲区。而使用读取文件时,只会发生第一次拷贝操作,也就是将文件内容拷贝到 OS 文件系统缓冲区,完成这个拷贝操作之后,还会执行其它一些复杂的操作,例如将相应的 OS 缓冲区映射到进程的地址空间。

尽管可以减少一次 I/O 拷贝,但由于的实现很复杂,调用将会带来额外的开销,因此在一些情况下,没有使用的必要:

访问小文件时,直接使用或将更加高效。

单个进程对文件执行顺序访问时(sequential access),使用几乎不会带来性能上的提升。譬如说,使用顺序读取文件时,文件系统会使用 read-ahead 的方式提前将文件内容缓存到文件系统的缓冲区,因此使用将很大程度上可以命中缓存。

那么,在什么情况下使用去访问文件会更高效呢?

对文件执行随机访问时,如果使用或,则意味着较低的 cache 命中率。这种情况下使用通常将更高效。

多个进程同时访问同一个文件时(无论是顺序访问还是随机访问),如果使用,那么 OS 缓冲区的文件内容可以在多个进程之间共享,从操作系统角度来看,使用可以大大节省内存。

sendfile()

Web Server 处理静态页面请求时,通常是从磁盘中读取网页的内容,然后发送给客户端:

下图是传统的读写文件流程:

 

正如我们前面说到的,使用读取文件时,将发生两次 I/O 拷贝。然而,数据发送的过程也发生了两次 I/O 拷贝,第一次是将用户缓冲区的数据写入内核的 socket 发送缓冲区,成功写入之后会返回,在返回之后,内核会将 socket 发送缓冲区的数据拷贝到网卡驱动。可以看到,整个过程发生了四次 I/O 拷贝操作。

然而除了考虑 I/O 拷贝带来的开销,我们还要考虑系统 context switch 带来的开销,当程序调用时,系统会从用户态切换到内核态,而当返回时,又会导致系统从内核态切换到用户态,所以调用发生两次 context switch,同理,调用也会发生两次 context switch。

Linux 提供了用来减少我们前面提到的 I/O 拷贝和 context switch 的次数:

 

使用发送文件时,实际发生了三次 I/O 拷贝,第一次是将磁盘中的文件内容拷贝到 OS 的文件系统缓冲区,第二次是将 OS 缓冲区的数据拷贝到 socket 的发送缓冲区,最后一次是将 socket 发送缓冲区的数据发送到网卡驱动。可以看到,与使用和发送文件相比,使用减少了一次 I/O 拷贝和两次 context switch。

如果使用的网卡支持 scatter-gather 特性,那么还可以再减少一次 I/O 拷贝:

 

这种情况下,使用发送文件只会发生两次 I/O 拷贝,第一次是将磁盘中的文件拷贝到 OS 的文件系统缓冲区,而第二次是将 OS 缓冲区的数据直接拷贝到网卡驱动。可以使用下面的命令查看网卡是否支持 scatter-gather 特性。

如何保证消费的可靠性传输?

1.kafka

其实这个可靠性传输,每种MQ都要从三个角度来分析:生产者弄丢数据、消息队列弄丢数据、消费者弄丢数据

这里先引一张kafka Replication的数据流向图

Producer在发布消息到某个Partition时,先通过ZooKeeper找到该Partition的Leader,然后无论该Topic的Replication Factor为多少(也即该Partition有多少个Replica),Producer只将该消息发送到该Partition的Leader。Leader会将该消息写入其本地Log。每个Follower都从Leader中pull数据。

针对上述情况,得出如下分析

(1)生产者丢数据

在kafka生产中,基本都有一个leader和多个follwer。follwer会去同步leader的信息。因此,为了避免生产者丢数据,做如下两点配置

  1. 第一个配置要在producer端设置acks=all。这个配置保证了,follwer同步完成后,才认为消息发送成功。

  2. 在producer端设置retries=MAX,一旦写入失败,这无限重试

(2)消息队列丢数据

针对消息队列丢数据的情况,无外乎就是,数据还没同步,leader就挂了,这时zookpeer会将其他的follwer切换为leader,那数据就丢失了。针对这种情况,应该做两个配置。

  1. replication.factor参数,这个值必须大于1,即要求每个partition必须有至少2个副本

  2. min.insync.replicas参数,这个值必须大于1,这个是要求一个leader至少感知到有至少一个follower还跟自己保持联系

这两个配置加上上面生产者的配置联合起来用,基本可确保kafka不丢数据

(3)消费者丢数据

这种情况一般是自动提交了offset,然后你处理程序过程中挂了。kafka以为你处理好了。再强调一次offset是干嘛的

offset:指的是kafka的topic中的每个消费组消费的下标。简单的来说就是一条消息对应一个offset下标,每次消费数据的时候如果提交offset,那么下次消费就会从提交的offset加一那里开始消费。

比如一个topic中有100条数据,我消费了50条并且提交了,那么此时的kafka服务端记录提交的offset就是49(offset从0开始),那么下次消费的时候offset就从50开始消费。
解决方案也很简单,改成手动提交即可。

posted on 2019-08-08 10:27  反光的小鱼儿  阅读(377)  评论(0编辑  收藏  举报