https://www.nowcoder.com/questionTerminal/22243d016f6b47f2a6928b4313c85387
描述
一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
解析
关于本题,前提是n个台阶会有一次n阶的跳法。分析如下:
f(1) = 1
f(2) = f(2-1) + f(2-2) //f(2-2) 表示2阶一次跳2阶的次数。
f(3) = f(3-1) + f(3-2) + f(3-3)
...
f(n) = f(n-1) + f(n-2) + f(n-3) + ... + f(n-(n-1)) + f(n-n)
说明:
1)这里的f(n) 代表的是n个台阶有一次1,2,...n阶的 跳法数。
2)n = 1时,只有1种跳法,f(1) = 1
3) n = 2时,会有两个跳得方式,一次1阶或者2阶,这回归到了问题(1) ,f(2) = f(2-1) + f(2-2)
4) n = 3时,会有三种跳得方式,1阶、2阶、3阶,
那么就是第一次跳出1阶后面剩下:f(3-1);第一次跳出2阶,剩下f(3-2);第一次3阶,那么剩下f(3-3)
因此结论是f(3) = f(3-1)+f(3-2)+f(3-3)
5) n = n时,会有n中跳的方式,1阶、2阶...n阶,得出结论:
f(n) = f(n-1)+f(n-2)+...+f(n-(n-1)) + f(n-n) => f(0) + f(1) + f(2) + f(3) + ... + f(n-1)
6) 由以上已经是一种结论,但是为了简单,我们可以继续简化:
f(n-1) = f(0) + f(1)+f(2)+f(3) + ... + f((n-1)-1) = f(0) + f(1) + f(2) + f(3) + ... + f(n-2)
f(n) = f(0) + f(1) + f(2) + f(3) + ... + f(n-2) + f(n-1) = f(n-1) + f(n-1)
可以得出:
f(n) = 2*f(n-1)
7) 得出最终结论,在n阶台阶,一次有1、2、...n阶的跳的方式时,总得跳法为:
| 1 ,(n=0 )
f(n) = | 1 ,(n=1 )
代码
//位移操作 public class Solution { public int JumpFloorII(int target) { if (target <= 0) { return 0; } return 1 << (target - 1); } }
//简单递归 public class Solution { public int JumpFloorII(int target) { if (target <= 0) { return -1; } else if (target == 1) { return 1; } else { return 2 * JumpFloorII(target - 1); } } }
//自己写的 public class Solution { public int JumpFloorII(int target) { if (target <= 0) { return 0; } else if (target == 1) { return 1; } else if (target == 2) { return 2; } else if (target == 3) { return 4; } int sum = 0; int startIndex = 1; while (startIndex < target) { sum += JumpFloorII(target - startIndex); startIndex++; } return sum + 1; } }
自己写的思路:其实也是f(n) = f(n - 1) + f(n - 2) .....+ f(n - n);
这里的f(n - n),其实是一条跳n阶,步长为n,所以就是1。