坐标轴的旋转及绕某一点旋转后坐标值求解
坐标轴的旋转
不改变坐标原点的位置和单位长度,只改变坐标轴方向的坐标系的变换,叫做坐标轴的旋转.
设点M在原坐标系中的坐标为(x,y),对应向量的模为r,幅角为α.将坐标轴绕坐标原点,按照逆时针方向旋转角θ形成新坐标系,点M在新坐标系中的坐标为(如图2-4),则
由此得到坐标轴的旋转的坐标变换公式
点绕点旋转
平面上一点x1,y1,绕平面上另一点x2,y2顺时针旋转θ角度 ,怎么求旋转后的x1,y1对应的坐标x,y
x=(x1-x2)cosθ-(y1-y2)sinθ+x2
y=(y1-y2)cosθ+(x1-x2)sinθ+y2
求解过程如下:
可以用极坐标来理解,极坐标系也有两个坐标轴:r(半径坐标)和θ(角坐标)。r坐标表示与极点的距离,θ坐标表示按逆时针方向坐标距离0°射线(有时也称作极轴)的角度,极轴就是在平面直角坐标系中的x轴正方向。
那么,我们以(x2,y2)为圆心,r为半径做圆(半径为点(x1,y1)到(x2,y2)距离)
点(x1,y1)对应圆方程为:
x1-x2=r*cosθ1
y1-y2=r*sinθ1
点(x,y)对应圆方程为:
x-x2=r*cos(θ1+ θ)
y-y2=r*sin(θ2 +θ)
我们进一步对点(x,y)的方程做展开计算得到
x-x2=r*cos(θ1+ θ) = r*cosθ1*cosθ-r*sinθ1*sinθ=(x1-x2)cosθ-(y1-y2)sinθ
y-y2=r*sin(θ2 +θ) = r*sinθ1*cosθ+r*cosθ1*sinθ=(y1-y2)cosθ+(x1-x2)sinθ
即:
x=(x1-x2)cosθ-(y1-y2)sinθ+x2
y=(y1-y2)cosθ+(x1-x2)sinθ+y2
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】博客园社区专享云产品让利特惠,阿里云新客6.5折上折
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 没有源码,如何修改代码逻辑?
· 一个奇形怪状的面试题:Bean中的CHM要不要加volatile?
· [.NET]调用本地 Deepseek 模型
· 一个费力不讨好的项目,让我损失了近一半的绩效!
· .NET Core 托管堆内存泄露/CPU异常的常见思路
· DeepSeek “源神”启动!「GitHub 热点速览」
· 微软正式发布.NET 10 Preview 1:开启下一代开发框架新篇章
· C# 集成 DeepSeek 模型实现 AI 私有化(本地部署与 API 调用教程)
· DeepSeek R1 简明指南:架构、训练、本地部署及硬件要求
· 2 本地部署DeepSeek模型构建本地知识库+联网搜索详细步骤