115.不同的子序列
72. 编辑距离
编辑距离总结篇
392.判断子序列
和昨天的最长重复子串一样,只要计算两者的重复长度是不是和s一样就行了。但是还是不如双指针的时间复杂度
O(nm)
O(nm)
class Solution: def isSubsequence(self, s: str, t: str) -> bool: # n = len(s) # m = len(t) # i = 0 # j = 0 # for i in range(n): # while(j<m and t[j]!=s[i]): # j += 1 # if j >= m: # return False # j += 1 # return True n = len(s) m = len(t) dp = [[0 for _ in range(m+1)] for _ in range(n+1)] for i in range(1, n+1): for j in range(1, m+1): if s[i-1] == t[j-1]: dp[i][j] = dp[i-1][j-1] + 1 else: dp[i][j] = max(dp[i-1][j], dp[i][j-1]) if dp[n][m] == n: return True return False
115.不同的子序列
很值得再做一遍的题目, 二维dp。在思考好dp的定义以后, 对于dp方程的推导和初始化的定义都是需要考虑的对象,深刻理解dp方程的定义是关键
class Solution: def numDistinct(self, s: str, t: str) -> int: n = len(s) m = len(t) dp = [[0 for _ in range(m+1)] for _ in range(n+1)] for i in range(n+1): dp[i][0] = 1 for j in range(1, m+1): for i in range(1, n+1): if s[i-1] == t[j-1]: dp[i][j] = dp[i-1][j-1] + dp[i-1][j] else: dp[i][j] = dp[i-1][j] return dp[n][m]
583. 两个字符串的删除操作
和昨天的最长重复子串一样,只要计算两者的重复长度是不是和s一样就行了,剩下的直接删掉。
class Solution: def minDistance(self, word1: str, word2: str) -> int: n = len(word1) m = len(word2) dp = [[0 for _ in range(m+1)] for _ in range(n+1)] for i in range(1, n+1): for j in range(1, m+1): if word1[i-1] == word2[j-1]: dp[i][j] = dp[i-1][j-1]+1 else: dp[i][j] = max(dp[i-1][j], dp[i][j-1]) return n+m-2*dp[n][m]
72. 编辑距离
感觉还挺难的 最主要的部分依旧是推导dp的公式以及初始化的部分
将Given two strings word1
and word2
, return the minimum number of operations required to convert word1
to word2
.
思考如何变化以及dp的单一还是很重要的
class Solution: def minDistance(self, word1: str, word2: str) -> int: m = len(word1) n = len(word2) dp = [[0 for _ in range(n+1)] for _ in range(m+1)] for i in range(1, m+1): dp[i][0] = i for j in range(1, n+1): dp[0][j] = j for i in range(1, m+1): for j in range(1, n+1): if word1[i-1] == word2[j-1]: dp[i][j] = dp[i-1][j-1] else: dp[i][j] = min( dp[i-1][j]+1, dp[i][j-1]+1, dp[i-1][j-1]+1 ) return dp[m][n]
动态规划之编辑距离总结篇
判断子序列
动态规划:392.判断子序列 (opens new window)给定字符串 s 和 t ,判断 s 是否为 t 的子序列。
这道题目 其实是可以用双指针或者贪心的的,但是我在开篇的时候就说了这是编辑距离的入门题目,因为从题意中我们也可以发现,只需要计算删除的情况,不用考虑增加和替换的情况。
- if (s[i - 1] == t[j - 1])
- t中找到了一个字符在s中也出现了
- if (s[i - 1] != t[j - 1])
- 相当于t要删除元素,继续匹配
状态转移方程:
if (s[i - 1] == t[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1; else dp[i][j] = dp[i][j - 1];
不同的子序列
动态规划:115.不同的子序列 (opens new window)给定一个字符串 s 和一个字符串 t ,计算在 s 的子序列中 t 出现的个数。
本题虽然也只有删除操作,不用考虑替换增加之类的,但相对于动态规划:392.判断子序列 (opens new window)就有难度了,这道题目双指针法可就做不了。
当s[i - 1] 与 t[j - 1]相等时,dp[i][j]可以有两部分组成。
一部分是用s[i - 1]来匹配,那么个数为dp[i - 1][j - 1]。
一部分是不用s[i - 1]来匹配,个数为dp[i - 1][j]。
这里可能有同学不明白了,为什么还要考虑 不用s[i - 1]来匹配,都相同了指定要匹配啊。
例如: s:bagg 和 t:bag ,s[3] 和 t[2]是相同的,但是字符串s也可以不用s[3]来匹配,即用s[0]s[1]s[2]组成的bag。
当然也可以用s[3]来匹配,即:s[0]s[1]s[3]组成的bag。
所以当s[i - 1] 与 t[j - 1]相等时,dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
当s[i - 1] 与 t[j - 1]不相等时,dp[i][j]只有一部分组成,不用s[i - 1]来匹配,即:dp[i - 1][j]
所以递推公式为:dp[i][j] = dp[i - 1][j];
状态转移方程:
if (s[i - 1] == t[j - 1]) { dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]; } else { dp[i][j] = dp[i - 1][j]; }
两个字符串的删除操作
动态规划:583.两个字符串的删除操作 (opens new window)给定两个单词 word1 和 word2,找到使得 word1 和 word2 相同所需的最小步数,每步可以删除任意一个字符串中的一个字符。
本题和动态规划:115.不同的子序列 (opens new window)相比,其实就是两个字符串可以都可以删除了,情况虽说复杂一些,但整体思路是不变的。
- 当word1[i - 1] 与 word2[j - 1]相同的时候
- 当word1[i - 1] 与 word2[j - 1]不相同的时候
当word1[i - 1] 与 word2[j - 1]相同的时候,dp[i][j] = dp[i - 1][j - 1];
当word1[i - 1] 与 word2[j - 1]不相同的时候,有三种情况:
情况一:删word1[i - 1],最少操作次数为dp[i - 1][j] + 1
情况二:删word2[j - 1],最少操作次数为dp[i][j - 1] + 1
情况三:同时删word1[i - 1]和word2[j - 1],操作的最少次数为dp[i - 1][j - 1] + 2
那最后当然是取最小值,所以当word1[i - 1] 与 word2[j - 1]不相同的时候,递推公式:dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1});
状态转移方程:
if (word1[i - 1] == word2[j - 1]) { dp[i][j] = dp[i - 1][j - 1]; } else { dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1}); }
编辑距离
动态规划:72.编辑距离 (opens new window)给你两个单词 word1 和 word2,请你计算出将 word1 转换成 word2 所使用的最少操作数 。
编辑距离终于来了,有了前面三道题目的铺垫,应该有思路了,本题是两个字符串可以增删改,比 动态规划:判断子序列 (opens new window),动态规划:不同的子序列 (opens new window),动态规划:两个字符串的删除操作 (opens new window)都要复杂的多。
在确定递推公式的时候,首先要考虑清楚编辑的几种操作,整理如下:
- if (word1[i - 1] == word2[j - 1])
- 不操作
- if (word1[i - 1] != word2[j - 1])
- 增
- 删
- 换
也就是如上四种情况。
if (word1[i - 1] == word2[j - 1]) 那么说明不用任何编辑,dp[i][j] 就应该是 dp[i - 1][j - 1],即dp[i][j] = dp[i - 1][j - 1];
此时可能有同学有点不明白,为啥要即dp[i][j] = dp[i - 1][j - 1]呢?
那么就在回顾上面讲过的dp[i][j]的定义,word1[i - 1] 与 word2[j - 1]相等了,那么就不用编辑了,以下标i-2为结尾的字符串word1和以下标j-2为结尾的字符串word2的最近编辑距离dp[i - 1][j - 1] 就是 dp[i][j]了。
在下面的讲解中,如果哪里看不懂,就回想一下dp[i][j]的定义,就明白了。
在整个动规的过程中,最为关键就是正确理解dp[i][j]的定义!
if (word1[i - 1] != word2[j - 1]),此时就需要编辑了,如何编辑呢?
操作一:word1增加一个元素,使其word1[i - 1]与word2[j - 1]相同,那么就是以下标i-2为结尾的word1 与 i-1为结尾的word2的最近编辑距离 加上一个增加元素的操作。
即 dp[i][j] = dp[i - 1][j] + 1;
操作二:word2添加一个元素,使其word1[i - 1]与word2[j - 1]相同,那么就是以下标i-1为结尾的word1 与 j-2为结尾的word2的最近编辑距离 加上一个增加元素的操作。
即 dp[i][j] = dp[i][j - 1] + 1;
这里有同学发现了,怎么都是添加元素,删除元素去哪了。
word2添加一个元素,相当于word1删除一个元素,例如 word1 = "ad" ,word2 = "a",word2添加一个元素d,也就是相当于word1删除一个元素d,操作数是一样!
操作三:替换元素,word1替换word1[i - 1],使其与word2[j - 1]相同,此时不用增加元素,那么以下标i-2为结尾的word1 与 j-2为结尾的word2的最近编辑距离 加上一个替换元素的操作。
即 dp[i][j] = dp[i - 1][j - 1] + 1;
综上,当 if (word1[i - 1] != word2[j - 1]) 时取最小的,即:dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
递归公式代码如下:
if (word1[i - 1] == word2[j - 1]) { dp[i][j] = dp[i - 1][j - 1]; } else { dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1; }