基本理论 https://programmercarl.com/二叉树理论基础.html#二叉树的种类
-
满二叉树:如果一棵二叉树只有度为0的结点和度为2的结点,并且度为0的结点在同一层上,则这棵二叉树为满二叉树。
-
完全二叉树:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层,则该层包含 1~ 2^(h-1) 个节点。
-
二叉搜索树:二叉搜索树是一个有序树。左小右大,
-
二叉树的遍历方式
深度优先遍历:先往深走,遇到叶子节点再往回走。
广度优先遍历:一层一层的去遍历。
- 深度优先遍历
- 前序遍历(递归法,迭代法)
- 中序遍历(递归法,迭代法)
- 后序遍历(递归法,迭代法)
- 广度优先遍历
- 层次遍历(迭代法)
public class TreeNode { int val; TreeNode left; TreeNode right; TreeNode() {} TreeNode(int val) { this.val = val; } TreeNode(int val, TreeNode left, TreeNode right) { this.val = val; this.left = left; this.right = right; } }
二叉树的递归遍历
这里帮助大家确定下来递归算法的三个要素。每次写递归,都按照这三要素来写,可以保证大家写出正确的递归算法!
-
确定递归函数的参数和返回值: 确定哪些参数是递归的过程中需要处理的,那么就在递归函数里加上这个参数, 并且还要明确每次递归的返回值是什么进而确定递归函数的返回类型。
-
确定终止条件: 写完了递归算法, 运行的时候,经常会遇到栈溢出的错误,就是没写终止条件或者终止条件写的不对,操作系统也是用一个栈的结构来保存每一层递归的信息,如果递归没有终止,操作系统的内存栈必然就会溢出。
-
确定单层递归的逻辑: 确定每一层递归需要处理的信息。在这里也就会重复调用自己来实现递归的过程
二叉树的迭代遍历
我们在栈与队列:匹配问题都是栈的强项 (opens new window)中提到了,递归的实现就是:每一次递归调用都会把函数的局部变量、参数值和返回地址等压入调用栈中,然后递归返回的时候,从栈顶弹出上一次递归的各项参数,所以这就是递归为什么可以返回上一层位置的原因。
前序遍历(迭代法)
我们先看一下前序遍历。
前序遍历是中左右,每次先处理的是中间节点,那么先将根节点放入栈中,然后将右孩子加入栈,再加入左孩子。
为什么要先加入 右孩子,再加入左孩子呢? 因为这样出栈的时候才是中左右的顺序。
中序遍历(迭代法)
在使用迭代法写中序遍历,就需要借用指针的遍历来帮助访问节点,栈则用来处理节点上的元素。
后序遍历(迭代法)
再来看后序遍历,先序遍历是中左右,后续遍历是左右中,那么我们只需要调整一下先序遍历的代码顺序,就变成中右左的遍历顺序,然后在反转result数组,输出的结果顺序就是左右中了,
二叉树的统一迭代法
将访问的节点放入栈中,把要处理的节点也放入栈中但是要做标记。
如何标记呢,就是要处理的节点放入栈之后,紧接着放入一个空指针作为标记。 这种方法也可以叫做标记法。
迭代法中序遍历
class Solution { public List<Integer> inorderTraversal(TreeNode root) { List<Integer> result = new LinkedList<>(); Stack<TreeNode> st = new Stack<>(); if (root != null) st.push(root); while (!st.empty()) { TreeNode node = st.peek(); if (node != null) { st.pop(); // 将该节点弹出,避免重复操作,下面再将右中左节点添加到栈中 if (node.right!=null) st.push(node.right); // 添加右节点(空节点不入栈) st.push(node); // 添加中节点 st.push(null); // 中节点访问过,但是还没有处理,加入空节点做为标记。 if (node.left!=null) st.push(node.left); // 添加左节点(空节点不入栈) } else { // 只有遇到空节点的时候,才将下一个节点放进结果集 st.pop(); // 将空节点弹出 node = st.peek(); // 重新取出栈中元素 st.pop(); result.add(node.val); // 加入到结果集 } } return result; } }
迭代法前序遍历
class Solution { public List<Integer> preorderTraversal(TreeNode root) { List<Integer> result = new LinkedList<>(); Stack<TreeNode> st = new Stack<>(); if (root != null) st.push(root); while (!st.empty()) { TreeNode node = st.peek(); if (node != null) { st.pop(); // 将该节点弹出,避免重复操作,下面再将右中左节点添加到栈中 if (node.right!=null) st.push(node.right); // 添加右节点(空节点不入栈) if (node.left!=null) st.push(node.left); // 添加左节点(空节点不入栈) st.push(node); // 添加中节点 st.push(null); // 中节点访问过,但是还没有处理,加入空节点做为标记。 } else { // 只有遇到空节点的时候,才将下一个节点放进结果集 st.pop(); // 将空节点弹出 node = st.peek(); // 重新取出栈中元素 st.pop(); result.add(node.val); // 加入到结果集 } } return result; } }
迭代法后序遍历
class Solution { public: vector<int> postorderTraversal(TreeNode* root) { vector<int> result; stack<TreeNode*> st; if (root != NULL) st.push(root); while (!st.empty()) { TreeNode* node = st.top(); if (node != NULL) { st.pop(); st.push(node); // 中 st.push(NULL); if (node->right) st.push(node->right); // 右 if (node->left) st.push(node->left); // 左 } else { st.pop(); node = st.top(); st.pop(); result.push_back(node->val); } } return result; } };