股票交易

https://loj.ac/problem/10183

题目描述

  已知股票\(T\)天的买入价和卖出价, 以及每天最多购买数和最多卖出数,并规定两次交易之间至少间隔\(W\)天,同一时间一个人的股票数不能超过\(MaxP\),求最多的获利。

思路

  这道题的限制条件比较多,但我们可以简单梳理出\(dp\)的模型,由于最多股票数已经给出,所以我们可以定义\(f[i][j]\)为到第\(i\)天为止有\(j\)支股票的最大获利。那么对于当前的状态来说,它可能有四种情况转移过来:1、全部在这一天买入;2、这一天买入\(k\)股并在\(i-w-1\)天有\(j-k\)股;3、这一天卖出\(k\)股,在\(i-w-1\)天有\(j+k\)股。4、这一天什么也没干。这样就很好转移了,不过考虑暴力转移复杂度会炸掉,但由于枚举的股数之间有状态的重叠,所以我们可以维护买入中在限额内的最大值,用单调队列维护即可。

代码

#include<bits/stdc++.h>
using namespace std;
const int N=2200;

int read()
{
	int res=0,w=1;
	char ch=getchar();
	while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}
	while(ch>='0'&&ch<='9'){res=(res<<3)+(res<<1)+(ch^48);ch=getchar();}
	return res*w;
}

int q[N],ap[N],bp[N],as[N],bs[N];
int f[N][N];
int main()
{
	int t,maxp,w;
	t=read();maxp=read();w=read();
	for(int i=1;i<=t;i++)
		ap[i]=read(),bp[i]=read(),as[i]=read(),bs[i]=read();
	memset(f,-0x3f,sizeof(f));
	f[0][0]=0;
	for(int i=1;i<=t;i++)
	{
		for(int j=0;j<=as[i];j++)
			f[i][j]=-j*ap[i];
		for(int j=0;j<=maxp;j++)
			f[i][j]=max(f[i][j],f[i-1][j]);
		if(i-w-1<0)continue ;
		
		int head=1,tail=0,v=i-w-1;
		for(int j=0;j<=maxp;j++)
		{
			while(head<=tail&&q[head]<j-as[i])head++;
			while(head<=tail&&f[v][q[tail]]+q[tail]*ap[i]<=f[v][j]+j*ap[i])tail--;
			q[++tail]=j;
			f[i][j]=max(f[i][j],f[v][q[head]]+q[head]*ap[i]-j*ap[i]);
		}
		head=1,tail=0;
		for(int j=maxp;j>=0;j--)
		{
			while(head<=tail&&q[head]>j+bs[i])head++;
			while(head<=tail&&f[v][q[tail]]+q[tail]*bp[i]<=f[v][j]+j*bp[i])tail--;
			q[++tail]=j;
			f[i][j]=max(f[i][j],f[v][q[head]]+q[head]*bp[i]-j*bp[i]);
		}
	}
	int ans=0;
	for(int i=0;i<=maxp;i++)
		ans=max(ans,f[t][i]);
	printf("%d\n",ans);
}
/*
单买:f[i][j]=-j*ap[i]; 
买:f[i][j]=max(f[i][j],f[i-w-1][k]-(j-k)*ap[i-w-1])  j-as[i]=<k<j 
卖:f[i][j]=max(f[i][j],f[i-w-1][k]+(k-j)*bp[i-w-1])  j<k<=j+bs[i]
none: f[i][j]=max(f[i][j],f[i-1][j])
*/
posted @ 2019-11-13 19:43  fbz  阅读(134)  评论(0编辑  收藏  举报