Caffe安装教程(原创)

转载请注明地址

说明:本文档参考自Caffe官网的安装说明,http://caffe.berkeleyvision.org/installation.html

如果对安装过程中,需要用到的依赖不明,请自行百度其作用。Ubuntu系统的安装请自行百度。 

1.安装环境

硬件:Intel E3 CPUNVIDIA  GTX960 GPU; 操作系统:Ubuntu14.04

2.依赖安装

接下来的安装全部使用linux命令行操作

(1)通用依赖 

sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler
sudo apt-get install --no-install-recommends libboost-all-dev 

(2)CUDA安装

可以使用apt-get方式,或者去官网下载linux系统下的.run包进行离线安装。由于apt-get指令拿到的软件包通常不是最新的,官网推荐使用.run包的方式进行离线安装。

对于没有GPU的同学来说,可以跳过这一步之后在编译源码时配置CPU-ONLY)。

1)下载CUDA.run

地址:https://developer.nvidia.com/cuda-downloads 

根据自己的OSCPU架构选择.run包并下载

2)退出桌面环境

使用键盘Ctrl+Alt+F1,系统退出桌面版,进入命令行模式。

注意:此时有些系统会遇到黑屏问题。解决方法:切回桌面版本(Ctrl+Alt+F7),修改/etc/default/grub文件中GRUB_CMDLINE_LINUX_DEFAULT的值为nomodeset,更新grub(sudo update-grub),重启电脑(或者重启电脑,在启动时进入grub设置中,将倒数第2行的roquiet splash 后面空格添加nomodesetF10启动系统,然后再按ctrl+alt+F1发现可以正常进入字符界面了)。

(安装时遇到这个问题,我通过后一种方式解决) 

3)退出X Windows桌面环境

sudo stop lightdm

4)安装CUDA .run

.run包加上可执行权限:

chmod +x cuda_7.5.18_linux.run

执行.run包:

./cuda_7.5.18_linux.run 

5)返回X Windows桌面环境

sudo start lightdm
Ctrl+Alt+F7

6)cuDNN 安装(可选)

如果使用 cuDNN 优化神经网络, 需要安装 cudnn-v5.0 以上版本。 该软件的安装非常简单。

tar -xzvf cudnn-7.5-linux-x64-v5.0-ga.tgz
cd cudnn-7.5-linux-x64-v5.0
sudo cp lib* /usr/local/cuda/lib64/
sudo cp cudnn.h /usr/local/cuda/include/

(3)BLAS

sudo apt-get install libatlas-base-dev

(4)Python

如果使用默认Python的方式进行Caffe开发,则需要安装python开发包。

sudo apt-get install python-dev

(5)兼容性说明 

操作系统

版本

兼容性说明

Ubuntu

16.04

CUDA8是被需要的

14.04

sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev

12.04

需要手动安装依赖(如下)

 

如果是Ubuntu12.04,需要手动安装兼容性依赖,如下:

wget https://google-glog.googlecode.com/files/glog-0.3.3.tar.gz
tar zxvf glog-0.3.3.tar.gz
cd glog-0.3.3
./configure
make && make install
# gflags
wget https://github.com/schuhschuh/gflags/archive/master.zip
unzip master.zip
cd gflags-master
mkdir build && cd build
export CXXFLAGS="-fPIC" && cmake .. && make VERBOSE=1
make && make install
# lmdb
git clone https://github.com/LMDB/lmdb
cd lmdb/libraries/liblmdb
make && make install

3.编译Caffe源代码并安装

Caffe源码支持make编译,或者CMake方式进行编译。编译前请确认已经安装好了gcc工具链(sudo apt-get install build-essential),如果使用CMake构建工程,请确认安装好CMake

(1)下载Caffe源码

Git clone https://github.com/BVLC/caffe.git

或者在github官网搜索Caffe,选择需要的分支然后Zip打包下载。

(2)Make编译源码

说明1

Configure the build by copying and modifying the example Makefile.config for your setup. The defaults should work, but uncomment the relevant lines if using Anaconda Python.

以下为命令行

cp Makefile.config.example Makefile.config
# Adjust Makefile.config (for example, if using Anaconda Python, or if cuDNN is desired)
make all
make test
make runtest 

说明2

For CPU & GPU accelerated Caffe, no changes are needed.

For cuDNN acceleration using NVIDIA’s proprietary cuDNN software, uncomment the USE_CUDNN := 1 switch in Makefile.config. cuDNN is sometimes but not always faster than Caffes GPU acceleration.

For CPU-only Caffe, uncomment CPU_ONLY := 1 in Makefile.config. 

(3)CMake方式构建工程并编译

根据需要可以配置Makefile.config

mkdir build
cd build
cmake ..
make all
make install
make runtest 

如果编译没有报Error,在runtest时一切OK,那么说明安装完成。可以开始Caffe的第一个小例子MNIST

posted @ 2016-09-20 15:27  Cpointer  阅读(4806)  评论(5编辑  收藏  举报