Java NIO(一)
同步阻塞IO(Blocking IO):即传统的IO模型。
同步非阻塞IO(Non-blocking IO):默认创建的socket都是阻塞的,非阻塞IO要求socket被设置为NONBLOCK。注意这里所说的NIO并非Java的NIO(New IO)库。
多路复用IO(IO Multiplexing):即经典的Reactor设计模式,有时也称为异步阻塞IO,Java中的Selector和Linux中的epoll都是这种模型。
异步IO(Asynchronous IO):即经典的Proactor设计模式,也称为异步非阻塞IO。
阻塞式I/O模型:
非阻塞式I/O模型:
在上图中NIO通过Selector 接受请求连接,如map.put("地址A“, accept),map.put("地址B“,read),map.put("地址C“,write)
当有请求read/write时,才开始建立Channel 建立请求和wirte 通道,并且通过Buffer获取数据块
多路复用IO模型(JAVA NIO就是采用此模式)
在多路复用IO模型中,会有一个线程(Java中的Selector)不断去轮询多个socket的状态,只有当socket真正有读写事件时,才真正调用实际的IO读写操作。因为在多路复用IO模型中,只需要使用一个线程就可以管理多个socket,系统不需要建立新的进程或者线程,也不必维护这些线程和进程,并且只有在真正有socket读写事件进行时,才会使用IO资源,所以它大大减少了资源占用。 (selector 支持对多个socketChannel 监听 ,正因为阻塞I/O只能阻塞一个I/O操作,而I/O复用模型能够阻塞多个I/O操作,所以才叫做多路复用。)
NIO关键类:
Java NIO 由以下几个核心部分组成:
- Channels
- Buffers
- Selectors
Channel 和 Buffer
基本上,所有的 IO 在NIO 中都从一个Channel 开始。Channel 有点象流。 数据可以从Channel读到Buffer中,也可以从Buffer 写到Channel中。这里有个图示:
Channel和Buffer有好几种类型。(类似于流input output stram)下面是JAVA NIO中的一些主要Channel的实现:
- FileChannel:从文件中读写数据。
- DatagramChannel:能通过UDP读写网络中的数据。
- SocketChannel:能通过TCP读写网络中的数据。
- ServerSocketChannel:可以监听新进来的TCP连接,像Web服务器那样。对每一个新进来的连接都会创建一个SocketChannel。
- FileChannel比较特殊,它可以与通道进行数据交互, 不能切换到非阻塞模式,套接字通道可以切换到非阻塞模式;
缓冲区 - 本质上是一块可以存储数据的内存,被封装成了buffer对象而已!
这些Buffer覆盖了你能通过IO发送的基本数据类型:byte, short, int, long, float, double 和 char。
缓冲区类型:
- ByteBuffer
- MappedByteBuffer
- CharBuffer
- DoubleBuffer
- FloatBuffer
- IntBuffer
- LongBuffer
- ShortBuffer
常用方法:
- allocate() - 分配一块缓冲区
- put() - 向缓冲区写数据
- get() - 向缓冲区读数据
- filp() - 将缓冲区从写模式切换到读模式
- clear() - 从读模式切换到写模式,不会清空数据,但后续写数据会覆盖原来的数据,即使有部分数据没有读,也会被遗忘;
- compact() - 从读数据切换到写模式,数据不会被清空,会将所有未读的数据copy到缓冲区头部,后续写数据不会覆盖,而是在这些数据之后写数据
- mark() - 对position做出标记,配合reset使用
- reset() - 将position置为标记值
缓冲区的一些属性:
- capacity - 缓冲区大小,无论是读模式还是写模式,此属性值不会变;
- position - 写数据时,position表示当前写的位置,每写一个数据,会向下移动一个数据单元,初始为0;最大为capacity - 1切换到读模式时,position会被置为0,表示当前读的位置
- limit - 写模式下,limit 相当于capacity 表示最多可以写多少数据,切换到读模式时,limit 等于原先的position,表示最多可以读多少数据。
选择器:相当于一个观察者,用来监听通道感兴趣的事件,一个选择器可以绑定多个通道;
通道向选择器注册时,需要指定感兴趣的事件,选择器支持以下事件:
- SelectionKey.OP_CONNECT
- SelectionKey.OP_ACCEPT
- SelectionKey.OP_READ
- SelectionKey.OP_WRITE
Selector
Selector允许单线程处理多个 Channel。如果你的应用打开了多个连接(通道),但每个连接的流量都很低,使用Selector就会很方便.
这是在一个单线程中使用一个Selector处理3个Channel的图示:
要使用Selector,得向Selector注册Channel,然后调用它的select()方法。这个方法会一直阻塞到某个注册的通道有事件就绪。
Selector selector = Selector.open(); channel.configureBlocking(false); SelectionKey key = channel.register(selector, SelectionKey.OP_READ); while(true) { int readyChannels = selector.select(); if(readyChannels == 0) continue; Set selectedKeys = selector.selectedKeys(); Iterator keyIterator = selectedKeys.iterator(); while(keyIterator.hasNext()) { SelectionKey key = keyIterator.next(); if(key.isAcceptable()) { // a connection was accepted by a ServerSocketChannel. } else if (key.isConnectable()) { // a connection was established with a remote server. } else if (key.isReadable()) { // a channel is ready for reading } else if (key.isWritable()) { // a channel is ready for writing } keyIterator.remove(); } }