Spark 概述
1.1 什么是 Spark
Spark 的产生背景
Spark 是一种快速、通用、可扩展的大数据分析引擎,2009 年诞生于加州大学伯克利分校 AMPLab,2010 年开源,2013 年 6 月成为 Apache 孵化项目,2014 年 2 月成为 Apache 顶级项目。项目是用 Scala 进行编写。
目前,Spark生态系统已经发展成为一个包含多个子项目的集合,其中包含 SparkSQL、Spark Streaming、GraphX、MLib、SparkR 等子项目,Spark 是基于内存计算的大数据并行计算框架。除了扩展了广泛使用的 MapReduce 计算模型,而且高效地支持更多计算模式,包括交互式查询和流处理。Spark 适用于各种各样原先需要多种不同的分布式平台的场景,包括批处理、迭代算法、交互式查询、流处理。通过在一个统一的框架下支持这些不同的计算
,Spark 使我们可以简单而低耗地把各种处理流程整合在一起。而这样的组合,在实际的数据分析过程中是很有意义的。不仅如此,Spark 的这种特性还大大减轻了原先需要对各种平台分别管理的负担。
大一统的软件栈,各个组件关系密切并且可以相互调用,这种设计有几个好处:
1、软件栈中所有的程序库和高级组件都可以从下层的改进中获益。
2、运行整个软件栈的代价变小了。不需要运行 5 到 10 套独立的软件系统了,一个机构只需要运行一套软件系统即可。系统的部署、维护、测试、支持等大大缩减。
3、能够构建出无缝整合不同处理模型的应用。
Spark 的内置项目如下:
Spark Core
:实现了 Spark 的基本功能,包含任务调度、内存管理、错误恢复、与存储系统交互等模块。Spark Core 中还包含了对弹性分布式数据集(resilient distributed dataset,简称RDD)的 API 定义。
Spark SQL
:是 Spark 用来操作结构化数据的程序包。通过 Spark SQL,我们可以使用 SQL 或者 Apache Hive 版本的 SQL 方言(HQL)来查询数据。Spark SQL 支持多种数据源,比 如 Hive 表、Parquet 以及 JSON 等。
Spark Streaming
:是 Spark 提供的对实时数据进行流式计算的组件。提供了用来操作数据流的 API,并且与 Spark Core 中的 RDD API 高度对应。
Spark MLlib
:提供常见的机器学习(ML)功能的程序库。包括分类、回归、聚类、协同过滤等,还提供了模型评估、数据导入等额外的支持功能。
集群管理器
:Spark 设计为可以高效地在一个计算节点到数千个计算节点之间伸缩计算。为了实现这样的要求,同时获得最大灵活性,Spark 支持在各种集群管理器(cluster manager)上运行,包括 Hadoop YARN、Apache Mesos,以及 Spark 自带的一个简易调度器,叫作独立调度器。
Spark 得到了众多大数据公司的支持,这些公司包括 Hortonworks、IBM、Intel、Cloudera、MapR、Pivotal、百度、阿里、腾讯、京东、携程、优酷土豆。当前百度的 Spark 已应用于凤巢、大搜索、直达号、百度大数据等业务;阿里利用 GraphX 构建了大规模的图计算和图挖掘系统,实现了很多生产系统的推荐算法;腾讯 Spark 集群达到 8000 台的规模,是当前已知的世界上最大的 Spark 集群。
1.2 Spark 特点
-
快
与 Hadoop 的 MapReduce 相比,Spark 基于内存的运算要快 100 倍以上,基于硬盘的运算也要快 10 倍以上。Spark 实现了高效的 DAG 执行引擎,可以通过基于内存来高效处理数据流。计算的中间结果是存在于内存中的。 -
易用
Spark 支持 Java、Python、R 和 Scala 的 API,还支持超过 80 种高级算法,使用户可以快速构建不同的应用。而且 Spark 支持交互式的 Python、R 和 Scala 的 shell,可以非常方便地在这些 shell 中使用 Spark 集群来验证解决问题的方法。 -
通用
Spark 提供了统一的解决方案。Spark 可以用于批处理、交互式查询(Spark SQL)、实时流处理(Spark Streaming)、机器学习(Spark MLlib)和图计算(GraphX)。这些不同类型的处理都可以在同一个应用中无缝使用。Spark 统一的解决方案非常具有吸引力,毕竟任何公司都想用统一的平台去处理遇到的问题,减少开发和维护的人力成本和部署平台的物力成本。 -
兼容性
Spark 可以非常方便地与其他的开源产品进行融合。比如,Spark 可以使用 Hadoop 的 YARN 和 Apache Mesos 作为它的资源管理和调度器器,并且可以处理所有 Hadoop 支持的数据,包括 HDFS、HBase 和 Cassandra 等。这对于已经部署 Hadoop 集群的用户特别重要,因为不需要做任何数据迁移就可以使用 Spark 的强大处理能力。Spark 也可以不依赖于第三方的资源管理和调度器,它实现了 Standalone 作为其内置的资源管理和调度框架,这样进一步降低了 Spark 的使用门槛,使得所有人都可以非常容易地部署和使用 Spark。此外,Spark 还提供了在 EC2 上部署 Standalone 的 Spark 集群的工具。
1.3 Spark 的用户和用途
我们大致把 Spark 的用例分为两类:数据科学应用和数据处理应用。也就对应的有两种人群:数据科学家和工程师。
数据科学任务
主要是数据分析领域,数据科学家要负责分析数据并建模,具备 SQL、统计、预测建模(机器学习)等方面的经验,以及一定的使用 Python、Matlab 或 R 语言进行编程的能力。
数据处理应用
工程师定义为使用 Spark 开发生产环境中的数据处理应用的软件开发者,通过对接 Spark 的 API 实现对处理的处理和转换等任务。