CDH版本hadoop2.6伪分布式安装

1、基础环境配置

主机名IP地址角色Hadoop用户
centos05 192.168.48.105

NameNode、ResourceManager、SecondaryNameNode、

DataNode、NodeManager

hadoop

1.1、关闭防火墙和SELinux

1.1.1、关闭防火墙

    略

1.1.2、关闭SELinux

    略

    注:以上操作需要使用root用户

1.2、hosts配置

  

1 | [root@centos05 ~]#  vim/etc/hosts
2 | ##hadoop host####
3 | 192.168.48.105  centos05

 

  

1 | [root@centos05 ~]#  vim /etc/sysconfig//network
2 
3 | HOSTNAME=centos05

  注:以上操作需要使用root用户,通过ping 主机名可以返回对应的IP即可

1.3、创建主机账号及配置无密码访问

  

新建用户,建议用adduser命令
sudo adduser hadoop passwd hadoop 输入密码后一直按回车即可,最后输入y确定。 在创建hadoop用户的同时也创建了hadoop用户组,下面我们把hadoop用户加入到hadoop用户组 输入 sudo usermod
-a -G hadoop hadoop 前面一个hadoop是组名,后面一个hadoop是用户名。完成后输入一下命令查询结果。 cat /etc/group 然后再把hadoop用户赋予root权限,让他可以使用sudo命令 切换到可以root的用户输入 sudo gedit /etc/sudoers sudo vi /etc/sudoers 在图形界面可以用第一个命令,是ubuntu自带的一个文字编辑器,终端命令界面使用第二个命令。有关vi编辑器的使用自行百度。 修改文件如下: # User privilege specification root ALL=(ALL) ALL hadoop ALL=(ALL) ALL 保存退出,hadoop用户就拥有了root权限

 

生成私钥和公钥
ssh-keygen -t rsa
拷贝公钥到主机(需要输入密码)
ssh-copy-id hadoop@hadoop
注:以上操作需要在hadoop用户,通过hadoop用户ssh到本机主机不需要密码即可

 

1.4、Java环境配置

1.4.1、下载JDK

  略

1.4.2、安装java

  略

2、安装hadoop

2.1、下载安装CDH版本的hadoop

  下载链接:http://archive-primary.cloudera.com/cdh5/cdh/5/

2.2、安装配置hadoop

  hadoop的安装配置使用hadoop用户操作;

  • 创建目录,用于存放hadoop数据;
[hadoop@centos05 ~]$ mkdir -p /home/hadoop/app/hadoop/hdfs/{name,data}

 

2.2.1、配置core-site.xml

[hadoop@centos05 ~]$vim  /opt/hadoop/hadoop-2.6.0/etc/hadoop/core-site.xml


<configuration> <property> <name>fs.defaultFS</name> <value>hdfs://localhost:9090</value> </property> <property> <name>hadoop.tmp.dir</name> <value>file:/opt/hadoop/tmp</value> </property> </configuration>

 

2.2.2、配置hdfs-site.xml

[hadoop@centos05 hadoop]$ vim /opt/hadoop/hadoop-2.6.0/etc/hadoop/hdfs-site.xml

<configuration>
    <property>
        <name>dfs.replication</name>
        <value>1</value>
    </property>
    <property>
        <name>dfs.namenode.name.dir</name>
        <value>/opt/hadoop/hdfs/name</value>
    </property>
    <property>
        <name>dfs.datanode.data.dir</name>
        <value>/opt/hadoop/hdfs/data</value>
    </property>
    <property>
        <name>dfs.webhdfs.enabled</name>
        <value>true</value>
    </property>
</configuration>

 

2.2.3、配置mapred-site.xml

[hadoop@centos05 hadoop]$cd /opt/hadoop/hadoop-2.6.0/etc/hadoop

[hadoop@centos05 hadoop]$cp mapred-site.xml.template mapred-site.xml

[hadoop@centos05 hadoop]$vim /opt/hadoop/hadoop-2.6.0/etc/hadoop/mapred-site.xml

<configuration>
    <property>
        <name>mapreduce.framework.name</name>
        <value>yarn</value>
    </property>
</configuration>

 

2.2.4、配置yarn-site.xml

[hadoop@centos05 hadoop]$  vim /opt/hadoop/hadoop-2.6.0/etc/hadoop/yarn-site.xml

<configuration>
<!-- Site specific YARN configuration properties -->
    <property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
    </property>
</configuration>

 

2.2.5、配置slaves

[hadoop@centos05 hadoop]$ vim /opt/hadoop/hadoop-2.6.0/etc/hadoop/slaves

centos05

 

2.2.6、配置hadoop-env

  修改hadoop-env.sh文件的JAVA_HOME环境变量,操作如下:  

[hadoop@centos05 hadoop]$ vim /opt/hadoop/hadoop-2.6.0/etc/hadoop/hadoop-env.sh

export JAVA_HOME=/opt/java/jdk1.8.0_191

 

2.2.7、配置yarn-env

  修改yarn-env.sh文件的JAVA_HOME环境变量,操作如下:

[hadoop@centos05 hadoop]$ vim /opt/hadoop/hadoop-2.6.0/etc/hadoop/hadoop-env.sh

export JAVA_HOME=/opt/java/jdk1.8.0_191

 

2.2.8、配置mapred-env

  修改mapred-env.sh文件的JAVA_HOME环境变量,操作如下:

[hadoop@centos05 hadoop]$ vim /opt/hadoop/hadoop-2.6.0/etc/hadoop/hadoop-env.sh

export JAVA_HOME=/opt/java/jdk1.8.0_191

 

2.2.9、配置HADOOP_PREFIX

  配置HADOOP主机用户环境变量:

[hadoop@centos05 ~]$ vim .bash_profile

####HADOOP_PREFIX####
export HADOOP_PREFIX=/opt/hadoop/hadoop-2.6.0
export PATH=$PATH:$HADOOP_PREFIX/bin:$HADOOP_PREFIX/sbin

  启用环境变量

[hadoop@centos05 ~]$ source .bash_profile 

  注:通过echo $HADOOP_PREFIX命令返回hadoop的安装目录

3、启动hadoop伪分布式

3.1、启动hdfs和yarn

  • 格式化hdfs

    [hadoop@centos05 ~]$  hdfs namenode -format

     

  • 启动dfs

  • 启动yarn

    [hadoop@centos05 ~]$  start-dfs.sh

    [hadoop@centos05 ~]$ start-yarn.sh

      

  • 查看启动的进程
    [hadoop@centos05 ~]$ jps
    18265 DataNode 18615 ResourceManager 18463 SecondaryNameNode 31343 Jps 18728 NodeManager 18152 NameNode

    注:关闭dfs命令为:stop-dfs.sh     stop-yarn.sh

3.3、启动集群

  hdfs和yarn的启动可以使用一条命令执行:  

启动:start-all.sh
关闭:  stop-all.sh

 

  • 启动后的所有进程:  

[hadoop@centos05 ~]$ start-all.sh
This script is Deprecated. Instead use start-dfs.sh and start-yarn.sh
Starting namenodes on [centos05]
centos05: starting namenode, logging to /opt/hadoop/hadoop-2.6.0/logs/hadoop-hadoop-namenode-centos05.out
centos05: starting datanode, logging to /opt/hadoop/hadoop-2.6.0/logs/hadoop-hadoop-datanode-centos05.out
Starting secondary namenodes [0.0.0.0]
0.0.0.0: starting secondarynamenode, logging to 
      /opt/hadoop/hadoop-2.6.0/logs/hadoop-hadoop-secondarynamenode-centos05.out starting yarn daemons starting resourcemanager, logging to /opt/hadoop/hadoop-2.6.0/logs/yarn-hadoop-resourcemanager-centos05.out centos05: starting nodemanager, logging to /opt/hadoop/hadoop-2.6.0/logs/yarn-hadoop-nodemanager-centos05.out [hadoop@centos05 ~]$

 

  • 启动后的所有进程:

[hadoop@centos05 ~]$ jps
32640 NodeManager
529 Jps
32057 NameNode
32526 ResourceManager
32356 SecondaryNameNode
32172 DataNode

 

4、hdfs的shell操作和Wordcount演示

4.1、简单的hdfs shell操作

  • 创建目录

    [hadoop@centos05 ~]$ hadoop fs -mkdir /input_test
    $ hadoop fs -mkdir /output_test

     

  • 查看目录

    [hadoop@centos05 ~]$ hadoop fs -ls /
    Found 3 items
    drwxr-xr-x   - hadoop supergroup          0 2018-11-27 23:04 /input_test
    drwxr-xr-x   - hadoop supergroup          0 2018-11-27 23:27 /output_test
    drwx------   - hadoop supergroup          0 2018-11-27 23:08 /tmp

     

  • 上传文件

    [hadoop@centos05 /]$ hadoop fs -put  /opt/hadoop/hadoop-2.6.0/share/doc/index.html  /input_test

     

  • 查看上传文件
  • [hadoop@centos05 /]$ hadoop fs -ls    /input_test/index.html
    -rw-r--r--   1 hadoop supergroup      19968 2018-11-28 10:08 /input_test/index.html

      

  • 查看文本文件内容
    [hadoop@centos05 /]$ hadoop fs -cat    /input_test/index.html

     

4.2、Wordcount

  将HDFS上/input_text/index.html 使用hadoop内置Wordcount的jar包统计文档的Wordcount

  • 启动测试

    [hadoop@centos05 /]$ hadoop jar /opt/hadoop/hadoop-2.6.0/share/hadoop/mapreduce/
    hadoop-mapreduce-examples-2.6.0-cdh5.15.1.jar wordcount
       /input_test/index.html /output_test/runcount
    18/11/28 10:18:53 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032 18/11/28 10:18:54 INFO input.FileInputFormat: Total input paths to process : 1 18/11/28 10:18:54 INFO mapreduce.JobSubmitter: number of splits:1 18/11/28 10:18:55 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1543369969234_0002 18/11/28 10:18:56 INFO impl.YarnClientImpl: Submitted application application_1543369969234_0002 18/11/28 10:18:56 INFO mapreduce.Job: The url to track the job:
    http://centos05:8088/proxy/application_1543369969234_0002/ 18/11/28 10:18:56 INFO mapreduce.Job: Running job: job_1543369969234_0002 18/11/28 10:19:16 INFO mapreduce.Job: Job job_1543369969234_0002 running in uber mode : false 18/11/28 10:19:16 INFO mapreduce.Job: map 0% reduce 0% 18/11/28 10:19:31 INFO mapreduce.Job: map 100% reduce 0% 18/11/28 10:19:43 INFO mapreduce.Job: map 100% reduce 100% 18/11/28 10:19:44 INFO mapreduce.Job: Job job_1543369969234_0002 completed successfully 18/11/28 10:19:45 INFO mapreduce.Job: Counters: 49 File System Counters FILE: Number of bytes read=13728 FILE: Number of bytes written=313427 FILE: Number of read operations=0 FILE: Number of large read operations=0 FILE: Number of write operations=0 HDFS: Number of bytes read=20075 HDFS: Number of bytes written=11719 HDFS: Number of read operations=6 HDFS: Number of large read operations=0 HDFS: Number of write operations=2 Job Counters Launched map tasks=1 Launched reduce tasks=1 Data-local map tasks=1 Total time spent by all maps in occupied slots (ms)=12498 Total time spent by all reduces in occupied slots (ms)=9428 Total time spent by all map tasks (ms)=12498 Total time spent by all reduce tasks (ms)=9428 Total vcore-milliseconds taken by all map tasks=12498 Total vcore-milliseconds taken by all reduce tasks=9428 Total megabyte-milliseconds taken by all map tasks=12797952 Total megabyte-milliseconds taken by all reduce tasks=9654272 Map-Reduce Framework Map input records=383 Map output records=1087 Map output bytes=18860 Map output materialized bytes=13728 Input split bytes=107 Combine input records=1087 Combine output records=504 Reduce input groups=504 Reduce shuffle bytes=13728 Reduce input records=504 Reduce output records=504 Spilled Records=1008 Shuffled Maps =1 Failed Shuffles=0 Merged Map outputs=1 GC time elapsed (ms)=174 CPU time spent (ms)=0 Physical memory (bytes) snapshot=0 Virtual memory (bytes) snapshot=5455101952 Total committed heap usage (bytes)=165810176 Shuffle Errors BAD_ID=0 CONNECTION=0 IO_ERROR=0 WRONG_LENGTH=0 WRONG_MAP=0 WRONG_REDUCE=0 File Input Format Counters Bytes Read=19968 File Output Format Counters Bytes Written=11719 [hadoop@centos05 /]$

     

  • 查看结果
    [hadoop@centos05 /]$ hadoop fs -ls /output_test/runcount/
    
    Found 2 items
    -rw-r--r--   1 hadoop supergroup          0 2018-11-28 10:19 /output_test/runcount/_SUCCESS
    -rw-r--r--   1 hadoop supergroup      11719 2018-11-28 10:19 /output_test/runcount/part-r-00000
    
    [hadoop@centos05 /]$ hadoop fs -cat  /output_test/runcount/part-r-00000
    2018-08-09      2
    <!--    2
    <!DOCTYPE       1
    </a>    3
    </body> 1
    </div>  13
    </head> 1
    </html> 1
    </li>   84
    </style>        1
    </ul>   12
    <a      94
    <body   1
    <div    15
    ......略

     

5、遇到的问题

5.1、WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable

解决:导致该问题的改版本是因为${HADOOP_PREFIX}/lib/native目录没有lib库,解决办法是到hadoop官网下载2.6的包,把lib/native目录下的数据拷贝过去。

5.2、openssl: false Cannot load libcrypto.so (libcrypto.so: 无法打开共享对象文件: 没有那个文件或目录)!

解决:/usr/lib64/目录下做一个libcrypto.so软连

cd /usr/lib64/
ln -s /usr/lib64/libcrypto.so.1.0.1e libcrypto.so
  • 使用命令export HADOOP_ROOT_LOGGER=DEBUG,console可以在终端上看到更详细的日志信息方便排查问题;
  • 以上两个问题可以使用命令检查是否为true:hadoop checknative

注:${HADOOP_PREFIX}表示hadoop的安装目录,或者说是${HADOOP_HOME}

6、参考资料

http://archive.cloudera.com/cdh5/cdh/5/hadoop-2.6.0-cdh5.7.5/hadoop-project-dist/hadoop-common/SingleCluster.html

posted @ 2018-11-28 10:28  乀崋  阅读(1028)  评论(0编辑  收藏  举报