T1
证明\(\neg A\rightarrow B, \neg A\rightarrow \neg B \vdash A\)
可用定理:\(\vdash (\neg A\rightarrow A)\rightarrow A\)
Proof
\[\begin{aligned}
A_1:\quad &\neg A\rightarrow B & \in \Gamma \\
A_2:\quad &\neg A\rightarrow \neg B & \in \Gamma \\
A_3:\quad &(\neg A\rightarrow \neg B)\rightarrow(B\rightarrow A)
& \mathscr A_3\\
A_4:\quad & B\rightarrow A & A_2, A_3 \vdash A_4 \\
A_5:\quad & (B\rightarrow A)\rightarrow(
\neg A \rightarrow (B\rightarrow A)) & \mathscr A_1\\
A_6:\quad & \neg A \rightarrow (B\rightarrow A) & A_4, A_5 \vdash A_6 \\
A_7:\quad & (\neg A \rightarrow (B\rightarrow A))\rightarrow\\
&((\neg A \rightarrow B)\rightarrow (\neg A\rightarrow A))
& \mathscr A_2\\
A_8:\quad & (\neg A \rightarrow B)\rightarrow (\neg A\rightarrow A)
& A_6, A_7 \vdash A_8 \\
A_9:\quad & \neg A\rightarrow A & A_1, A_8 \vdash A_9 \\
A_{10}:\quad & (\neg A\rightarrow A)\rightarrow A
& \vdash (\neg A\rightarrow A)\rightarrow A \\
A_{11}:\quad & A & A_9, A_{10} \vdash A_{11}
\end{aligned}
\]
T2
根据证明长度归纳,分类讨论证明
\[\text若 C,A\vdash B \text 则 C\vdash A\rightarrow B
\]
其中,\(B\)符合以下四种情形之一:
-
\(B\)是公理;
-
\(B\)是\(C\);
-
\(B\)是\(A\);
-
\(C,A\vdash B\)的证明序列中\(B\)由合式公式\(Q\)、\(Q\rightarrow B\)通过MP规则得到
Proof
本题提供了一种把「使用演绎定理构造的证明」转化为「普通证明」的方法
\[\begin{aligned}
C \vdash &B\\
C \vdash &B\rightarrow (A\rightarrow B) & \mathscr A_1\\
C \vdash &A\rightarrow B & \text{MP}
\end{aligned}
\]
\[\begin{aligned}
C\vdash& A\rightarrow((A\rightarrow A)\rightarrow A) & \mathscr A_1\\
C\vdash& (A\rightarrow((A\rightarrow A)\rightarrow A))
\rightarrow \\
&((A\rightarrow(A\rightarrow A))\rightarrow (A\rightarrow A))
& \mathscr A_2\\
C\vdash& (A\rightarrow(A\rightarrow A))
\rightarrow (A\rightarrow A) & \text{MP}\\
C\vdash& A\rightarrow(A\rightarrow A) & \mathscr A_1\\
C\vdash& A\rightarrow A & \text{MP}
\end{aligned}
\]
- 情形4:此时根据归纳假设有\(C\vdash A\rightarrow Q;\ C\vdash A\rightarrow (Q\rightarrow B)\)
\[\begin{aligned}
C\vdash &A\rightarrow Q & Hypo\\
C\vdash &A\rightarrow (Q\rightarrow B) & Hypo\\
C\vdash &(A\rightarrow (Q\rightarrow B))\rightarrow\\
&((A\rightarrow Q)\rightarrow(A\rightarrow B)) & \mathscr A_2 \\
C\vdash &(A\rightarrow Q)\rightarrow(A\rightarrow B) & \text{MP}\\
C\vdash &A\rightarrow B & \text{MP}
\end{aligned}
\]
T3
证明\(\vdash ((A\rightarrow B)\rightarrow A)\rightarrow A\)
可用定理:
\[\begin{aligned}
&\vdash A\rightarrow A\\
&\vdash (P\rightarrow Q)\rightarrow(\neg Q\rightarrow \neg P)\\
&Q\rightarrow(P\rightarrow R), P \vdash Q\rightarrow R\\
&P \rightarrow Q ,Q \rightarrow R \vdash P \rightarrow R
\end{aligned}
\]
Proof
\[\begin{array}{lll}
A_1:& \neg A\rightarrow(\neg(A\rightarrow B)\rightarrow \neg A )
&\mathscr A_1\\
A_2:& (\neg(A\rightarrow B)\rightarrow \neg A )\rightarrow
(A\rightarrow (A\rightarrow B))&\mathscr A_3\\
A_3:& (A\rightarrow (A\rightarrow B))\rightarrow(
(A\rightarrow A)\rightarrow (A\rightarrow B )) &\mathscr A_2\\
A_4:& ((A\rightarrow A)\rightarrow (A\rightarrow B ))\rightarrow\\
& (\neg(A\rightarrow B )\rightarrow \neg(A\rightarrow A))
& \vdash (P\rightarrow Q)\rightarrow(\neg Q\rightarrow \neg P)\\
A_5:& \neg A\rightarrow(\neg(A\rightarrow B )\rightarrow
\neg(A\rightarrow A)) & A_{1},A_2,A_3,A_4\vdash A_5\\
A_6:& (\neg A\rightarrow(\neg(A\rightarrow B )\rightarrow
\neg(A\rightarrow A)))\rightarrow \\
& ((\neg A\rightarrow\neg(A\rightarrow B ))\rightarrow(
\neg A\rightarrow\neg(A\rightarrow A)))) &\mathscr A_2\\
A_7:& (\neg A\rightarrow\neg(A\rightarrow B ))\rightarrow(
\neg A\rightarrow\neg(A\rightarrow A)))& A_5,A_6\vdash A_7\\
A_8:& ((A\rightarrow B)\rightarrow A)\rightarrow(
\neg A\rightarrow\neg(A\rightarrow B)) \\
&\qquad \vdash (P\rightarrow Q)\rightarrow(\neg Q\rightarrow \neg P)\\
A_9:& (\neg A\rightarrow\neg(A\rightarrow A)))\rightarrow(
(A\rightarrow A)\rightarrow A)& \mathscr A_3 \\
A_{10}:& ((A\rightarrow B)\rightarrow A)\rightarrow(
(A\rightarrow A)\rightarrow A) & A_{8},A_7,A_9\vdash A_{10} \\
A_{11}:& A\rightarrow A & \vdash A\rightarrow A\\
A_{12}:& ((A\rightarrow B)\rightarrow A)\rightarrow A
& Q\rightarrow(P\rightarrow R), P\vdash Q\rightarrow R
\end{array}
\]
T4
证明$\vdash \forall x P(x) \rightarrow \neg \exists x \neg P(x) $
可用定理:\(P \rightarrow Q ,Q \rightarrow R \vdash P \rightarrow R;\quad \vdash Q \rightarrow \neg \neg Q\)
Proof
\[\begin{aligned}
\omega_1 &\quad \forall x P(x)\rightarrow P(x)
& \text{公理四}\\
\omega_2 &\quad P(x) \rightarrow \neg \neg P(x)
& \vdash Q \rightarrow \neg \neg Q\\
\omega_3 &\quad \forall x P(x) \rightarrow \neg \neg P(x)
& \omega_1, \omega_2 \vdash \omega_3\\
\omega_4 &\quad \forall x(\forall x P(x) \rightarrow \neg \neg P(x))
& \text{UG}(\omega_3)\\
\omega_5 &\quad \forall x(\forall x P(x) \rightarrow \neg \neg P(x))
\rightarrow (\forall x P(x) \rightarrow \forall x \neg \neg P(x))
&\text{公理五}\\
\omega_6 &\quad \forall x P(x) \rightarrow \forall x \neg \neg P(x)
&\omega_5 = \omega_4 \rightarrow \omega_6 (MP)\\
\omega_7 &\quad \forall x \neg \neg P(x) \rightarrow \neg \neg\forall x \neg \neg P(x)
& \vdash Q \rightarrow \neg \neg Q\\
\omega_8 &\quad \forall x P(x) \rightarrow \neg \neg \forall x \neg \neg P(x)
& \omega_6, \omega_7 \vdash \omega_8 (\text{传递律})\\
\end{aligned}
\]
T5
-
证明\(\vdash (\neg Q\rightarrow Q)\rightarrow(R\rightarrow Q)\)
-
证明\(Q\rightarrow (P\rightarrow R), P\vdash Q\rightarrow R\)
-
借助前两问结论证明\(\vdash (\neg A\rightarrow A)\rightarrow A\)
可用定理:
\[\begin{aligned}
& P \rightarrow Q ,Q \rightarrow R \vdash P \rightarrow R;\\
\end{aligned}
\]
答案及解析:
(1)
\[\begin{aligned}
A_1:&\quad \neg Q\rightarrow (\neg\neg R\rightarrow \neg Q) & \mathscr A_1\\
A_2:&\quad (\neg\neg R\rightarrow \neg Q)\rightarrow (Q\rightarrow \neg R) & \mathscr A_3\\
A_3:&\quad \neg Q\rightarrow(Q\rightarrow \neg R) & A_1,A_2\vdash A_3\\
A_4:&\quad (\neg Q\rightarrow(Q\rightarrow \neg R))\rightarrow\\
&\quad ((\neg Q\rightarrow Q)\rightarrow(\neg Q\rightarrow \neg R) ) & \mathscr A_2\\
A_5:&\quad (\neg Q\rightarrow Q)\rightarrow(\neg Q\rightarrow \neg R) & A_3,A_4\vdash A_5\\
A_6:&\quad (\neg Q\rightarrow \neg R)\rightarrow(R\rightarrow Q) & \mathscr A_3\\
A_7:&\quad (\neg Q\rightarrow Q)\rightarrow(R\rightarrow Q) & A_5, A_6\vdash A_7
\end{aligned}
\]
(2)
\[\begin{aligned}
A_1:&\quad P & \in\Gamma\\
A_2:&\quad P\rightarrow(Q\rightarrow P) & \mathscr A_1\\
A_3:&\quad Q\rightarrow P & A_1,A_2\vdash A_3\\
A_4:&\quad Q\rightarrow(P\rightarrow R) & \in\Gamma\\
A_5:&\quad (Q\rightarrow(P\rightarrow R))\rightarrow\\
&\quad ((Q\rightarrow P)\rightarrow(Q\rightarrow R)) & \mathscr A_2\\
A_6:&\quad (Q\rightarrow P)\rightarrow(Q\rightarrow R) & A_4,A_5\vdash A_6\\
A_7:&\quad Q\rightarrow R & A_3,A_6\vdash A_7
\end{aligned}
\]
(3)
\[\begin{aligned}
A_1\quad& (\neg A\rightarrow A)\rightarrow(
(Q\rightarrow(P\rightarrow Q))\rightarrow A ) ) & Lemma1\\
A_2\quad& Q\rightarrow(P\rightarrow Q) & \mathscr A_1\\
A_3\quad& (\neg A\rightarrow A)\rightarrow A & Lemma2
\end{aligned}
\]
T6
证明
\[\vdash (P\rightarrow R)\land (Q\rightarrow S) \rightarrow (
P\land Q\rightarrow R\land S)
\]
可用定理:任意
Thinking
\[(R\rightarrow\neg S){\color{blue}{[4]}}
\rightarrow((P\rightarrow R)\color{blue}{[1]}
\rightarrow (P\rightarrow \neg S))\color{blue}{[2,3]}
\\ \Uparrow\\
(R\rightarrow\neg S)\color{blue}{[4]}
\rightarrow((P\rightarrow R)\color{blue}{[1]}
\rightarrow ((\neg S\rightarrow \neg Q)\color{blue}{[2]}
\rightarrow (P\rightarrow\neg Q)\color{blue}{[3]}))
\\ \Uparrow\\
(R\rightarrow\neg S)\color{blue}{[4]}
\rightarrow((P\rightarrow R)\color{blue}{[1]}
\rightarrow ((Q\rightarrow S)\color{blue}{[2]}
\rightarrow (P\rightarrow\neg Q)\color{blue}{[3]}))
\\ \Uparrow\\
(R\rightarrow\neg S)\color{blue}{[4]}
\rightarrow((P\rightarrow R)\color{blue}{[1]}
\rightarrow (\neg(P\rightarrow \neg Q){\color{blue}{[3]}}
\rightarrow \neg(Q\rightarrow S){\color{blue}{[2]}}))
\\ \Uparrow\\
(R\rightarrow\neg S)\color{blue}{[4]}
\rightarrow(\neg (P\rightarrow \neg Q)\color{blue}{[3]}
\rightarrow ((P\rightarrow R)\color{blue}{[1]}
\rightarrow \neg(Q\rightarrow S)\color{blue}{[2]}))
\\ \Uparrow\\
(R\rightarrow\neg S)\color{blue}{[4]}
\rightarrow(\neg((P\rightarrow R)\color{blue}{[1]}
\rightarrow\neg(Q\rightarrow S)\color{blue}{[2]})
\rightarrow (P\rightarrow \neg Q)\color{blue}{[3]})
\\ \Uparrow\\
\neg((P\rightarrow R)\color{blue}{[1]}
\rightarrow\neg(Q\rightarrow S)\color{blue}{[2]})
\rightarrow((R\rightarrow\neg S)\color{blue}{[4]}
\rightarrow (P\rightarrow \neg Q)\color{blue}{[3]})
\\ \Uparrow\\
\neg((P\rightarrow R)\color{blue}{[1]}
\rightarrow\neg(Q\rightarrow S)\color{blue}{[2]})\rightarrow
(\neg(P\rightarrow \neg Q)\color{blue}{[3]}
\rightarrow \neg(R\rightarrow\neg S)\color{blue}{[4]})
\\ \Uparrow\\
(P\rightarrow R)\land (Q\rightarrow S) \rightarrow (
P\land Q\rightarrow R\land S)
\]
Proof.
\[\begin{array}{lll}
A_1& (R\rightarrow\neg S)\rightarrow((P\rightarrow R)
\rightarrow (P\rightarrow\neg S))
&\vdash (R\rightarrow S)\rightarrow((P\rightarrow R)
\rightarrow (P\rightarrow S))\\
A_2& (P\rightarrow\neg S)\rightarrow((\neg S\rightarrow\neg Q)
\rightarrow(P\rightarrow\neg Q))
&\vdash (R\rightarrow S)\rightarrow((S\rightarrow P)
\rightarrow (R\rightarrow P))\\
A_3& (Q\rightarrow S)\rightarrow(\neg S\rightarrow\neg Q)
&\vdash (P\rightarrow Q)\rightarrow(\neg Q\rightarrow\neg P)\\
A_4& ((Q\rightarrow S)\rightarrow(\neg S\rightarrow\neg Q))\rightarrow(\\
&((\neg S\rightarrow \neg Q)\rightarrow(P\rightarrow\neg Q))\rightarrow\\
& ((Q\rightarrow S)\rightarrow(P\rightarrow\neg Q)))
&\vdash (R\rightarrow S)\rightarrow((S\rightarrow P)
\rightarrow (R\rightarrow P))\\
A_5& ((\neg S\rightarrow \neg Q)\rightarrow(P\rightarrow\neg Q))
\rightarrow\\
& ((Q\rightarrow S)\rightarrow(P\rightarrow\neg Q))
& A_4=A_3\rightarrow A_5\\
A_6& (P\rightarrow\neg S)\rightarrow((Q\rightarrow S)
\rightarrow(P\rightarrow\neg Q))
& A_2, A_5\vdash A_6\\
A_7& ((Q\rightarrow S)\rightarrow(P\rightarrow\neg Q))\rightarrow\\
& (\neg (P\rightarrow\neg Q)\rightarrow\neg (Q\rightarrow S))
& \vdash (P\rightarrow Q)\rightarrow(\neg Q\rightarrow\neg P)\\
A_8& (P\rightarrow\neg S)\rightarrow
(\neg (P\rightarrow\neg Q)\rightarrow\neg (Q\rightarrow S))
& A_6, A_7\vdash A_8\\
A_9& ((P\rightarrow\neg S)\rightarrow(\neg (P\rightarrow\neg Q)
\rightarrow\neg (Q\rightarrow S)))\\
& \rightarrow(((P\rightarrow R)\rightarrow
(P\rightarrow\neg S))\rightarrow\\
& ((P\rightarrow R)\rightarrow(\neg (P\rightarrow\neg Q)
\rightarrow\neg (Q\rightarrow S)))
&\vdash (R\rightarrow S)\rightarrow((P\rightarrow R)
\rightarrow (P\rightarrow S))\\
A_{10}& ((P\rightarrow R)\rightarrow
(P\rightarrow\neg S))\rightarrow\\
& ((P\rightarrow R)\rightarrow(\neg (P\rightarrow\neg Q)
\rightarrow\neg (Q\rightarrow S)))
& A_9=A_8\rightarrow A_{10}\\
A_{11}& ((P\rightarrow R)\rightarrow(\neg (P\rightarrow\neg Q)
\rightarrow\neg (Q\rightarrow S)))\\
& \rightarrow(\neg (P\rightarrow\neg Q)\rightarrow((P\rightarrow R)
\rightarrow\neg (Q\rightarrow S)))
&\vdash (P\rightarrow(Q\rightarrow R))\rightarrow
(Q\rightarrow(P\rightarrow R)) \\
A_{12}& ((P\rightarrow R)\rightarrow
(P\rightarrow\neg S))\rightarrow\\
& (\neg (P\rightarrow\neg Q)\rightarrow((P\rightarrow R)
\rightarrow\neg (Q\rightarrow S)))
& A_{10}, A_{11} \vdash A_{12}\\
A_{13}& (\neg (P\rightarrow\neg Q)\rightarrow((P\rightarrow R)
\rightarrow\neg (Q\rightarrow S)))\\
& \rightarrow (\neg((P\rightarrow R)
\rightarrow\neg (Q\rightarrow S))\\
&\rightarrow (P\rightarrow\neg Q))
&\vdash(\neg P\rightarrow Q)\rightarrow(\neg Q\rightarrow P)\\
A_{14}& (R\rightarrow\neg S)\rightarrow(\neg((P\rightarrow R)
\rightarrow\neg (Q\rightarrow S))\\
&\rightarrow (P\rightarrow\neg Q))
& A_1, A_{12}, A_{13}\vdash A_{14}\\
A_{15}& ((R\rightarrow\neg S)\rightarrow(\neg((P\rightarrow R)
\rightarrow\neg (Q\rightarrow S))\\
&\rightarrow (P\rightarrow\neg Q)))\rightarrow(\neg((P\rightarrow R)
\rightarrow\\&\neg (Q\rightarrow S))\rightarrow(
(R\rightarrow\neg S)\rightarrow(P\rightarrow\neg Q)))
&\vdash (P\rightarrow(Q\rightarrow R))\rightarrow
(Q\rightarrow(P\rightarrow R)) \\
A_{16}& \neg((P\rightarrow R)\rightarrow\neg (Q\rightarrow S))
\rightarrow\\
&((R\rightarrow\neg S)\rightarrow(P\rightarrow\neg Q))
& A_{15}=A_{14}\rightarrow A_{16}\\
A_{17}& ((R\rightarrow\neg S)\rightarrow(P\rightarrow\neg Q))
\rightarrow\\
&(\neg(P\rightarrow\neg Q)\rightarrow\neg(R\rightarrow\neg S))
& \vdash (P\rightarrow Q)\rightarrow(\neg Q\rightarrow\neg P)\\
A_{18}& \neg((P\rightarrow R)\rightarrow\neg (Q\rightarrow S))
\rightarrow\\
&(\neg(P\rightarrow\neg Q)\rightarrow\neg(R\rightarrow\neg S))
& A_{16}, A_{17} \vdash A_{18}\\
A_{19}& (P\rightarrow R)\land(Q\rightarrow S)\rightarrow
(P\land Q\rightarrow R\land S)
& P\land Q\equiv \neg(P\rightarrow \neg Q)
\end{array}
\]