Week 9 Problems
T1
用等值演算、构造指派等方式判断公式的永真性
(1)
\[(\forall xP(x)\rightarrow \exist xQ(x))\rightarrow\exist x (P(x)\rightarrow Q(x) )
\]
(2)
\[(\forall x P(x)\rightarrow \forall x Q(x))\rightarrow \forall x (P(x)\rightarrow Q(x))
\]
T2
以下哪一步出现错误?
\[\begin{aligned}
& \forall x(G(x)\lor H(x))\\
\models & \neg\neg\forall x(G(x)\lor H(x)) & 1\\
\models & \neg\exists x\neg(G(x)\lor H(x)) & 2\\
\models & \neg\exists x(\neg G(x)\land\neg H(x)) & 3\\
\models & \neg(\exists x\neg G(x)\land \exists x\neg H(x)) & 4\\
\models & \neg\exists x\neg G(x) \lor \neg\exists x\neg H(x) & 5\\
\models & \forall x G(x)\lor \forall x H(x) & 6
\end{aligned}
\]
A: 3 | B: 4 | C: 5 | D: 6 | E: 没有错误 |
---|
T3
前束范式\(A\)的无\(\forall\)前束范式\(A'\)的递归定义如下
-
若\(A\)不含\(\forall\)量词,则\(A'\)是$ A$
-
若\(A\)是\(\forall y B\),则\(A'\)是\((B^y_a)'\),其中\(a\)是\(B\)所不包含的常元
-
若\(A\)是\(\exists x_1\exists x_2\cdots \exists x_n\forall yB\),则\(A'\)是\(\left(\exists x_1\exists x_2\cdots \exists x_nB^y_{f(x_1,x_2,\cdots x_n)}\right)'\),其中\(f\)是\(B\)所不包含的函词
证明前束范式\(A\)是永真式当且仅当\(A'\)是永真式,其中,\(A'\)是\(A\)的无\(\forall\)前束范式