Go并发控制--Channel篇
1. 前言
我们考虑这么一种场景,协程A执行过程中需要创建子协程A1、A2、A3…An,协程A创建完子协程后就等待子协程退出。
针对这种场景,GO提供了三种解决方案:
- Channel: 使用channel控制子协程
- WaitGroup : 使用信号量机制控制子协程
- Context: 使用上下文控制子协程
三种方案各有优劣,比如Channel优点是实现简单,清晰易懂,WaitGroup优点是子协程个数动态可调整,Context优点是对子协程派生出来的孙子协程的控制。
缺点是相对而言的,要结合实例应用场景进行选择。
channel一般用于协程之间的通信,channel也可以用于并发控制。比如主协程启动N个子协程,主协程等待所有子协程退出后再继续后续流程,这种场景下channel也可轻易实现。
2. 使用channel控制子协程
2.1 使用场景
package main
import (
"time"
"fmt"
)
func Process(ch chan int) {
//Do some work...
time.Sleep(time.Second)
ch <- 1 //管道中写入一个元素表示当前协程已结束
}
func main() {
channels := make([]chan int, 10) //创建一个10个元素的切片,元素类型为channel
for i:= 0; i < 10; i++ {
channels[i] = make(chan int) //切片中放入一个channel
go Process(channels[i]) //启动协程,传一个管道用于通信
}
for i, ch := range channels { //遍历切片,等待子协程结束
<-ch
fmt.Println("Routine ", i, " quit!")
}
}
上面程序通过创建N个channel来管理N个协程,每个协程都有一个channel用于跟父协程通信,父协程创建完所有协程后等待所有协程结束。
这个例子中,父协程仅仅是等待子协程结束,其实父协程也可以向管道中写入数据通知子协程结束,这时子协程需要定期地探测管道中是否有消息出现。
2.2 总结
使用channel来控制子协程的优点是实现简单,缺点是当需要大量创建协程时就需要有相同数量的channel,而且对于子协程继续派生出来的协程不方便控制。
下一篇介绍 并发控制--WaitGroup篇
♥永远年轻,永远热泪盈眶♥