JVM串讲

JVM串讲

知识总结梳理

内存区域:
有逻辑的说出来,各种是干什么的,是否是线程安全的
方法区从Jdk1.8开始的变化,为什么这么设置?

类加载机制
类加载的几步骤,双亲委派模型
类的生命周期

对象的创建过程
对象创建的几步
对象的内存布局
对象的访问方式

如果判断对象是否存活
判断对象是否存活的标识

GC回收算法与垃圾回收器
分代回收、新生代算法、老年代算法
minorGc 与 FullGC

其它知识
初始化执行的先后顺序、final/finally/finallize
字节码目前阶段不会问,入职1年以后自己想学可以学

实际应用
常用命令
死锁、OOM与Error,类加载机制
优化与JVM的参数相关

内存区域

https://www.jianshu.com/p/76959115d486

以Sun HotSpot虚拟机为基础分析

157735415549560

其中方法区和堆是所有线程共享的,栈,本地方法栈和程序虚拟机则为线程私有的。

程序计数器

程序计数器是一块很小的内存空间,它是线程私有的,可以认作为当前线程的行号指示器。

为什么需要程序计数器?

我们知道对于一个处理器(如果是多核cpu那就是一核),在一个确定的时刻都只会执行一条线程中的指令,一条线程中有多个指令,为了线程切换可以恢复到正确执行位置,每个线程都需有独立的一个程序计数器,不同线程之间的程序计数器互不影响,独立存储。

Java栈(虚拟机栈)

同计数器也为线程私有,生命周期与相同,就是我们平时说的栈,栈描述的是Java方法执行的内存模型

每个方法被执行的时候都会创建一个栈帧用于存储局部变量表,操作栈,动态链接,方法出口等信息。每一个方法被调用的过程就对应一个栈帧在虚拟机栈中从入栈到出栈的过程。

栈帧: 是用来存储数据和部分过程结果的数据结构。栈帧的位置:  内存 -> 运行时数据区 -> 某个线程对应的虚拟机栈 -> here[在这里]栈帧大小确定时间: 编译期确定,不受运行期数据影响。

平时说的栈一般指局部变量表部分。

局部变量表:一片连续的内存空间,用来存放方法参数,以及方法内定义的局部变量,存放着编译期间已知的数据类型(八大基本类型和对象引用(reference类型),returnAddress类型。它的最小的局部变量表空间单位为Slot,虚拟机没有指明Slot的大小,但在jvm中,long和double类型数据明确规定为64位,这两个类型占2个Slot,其它基本类型固定占用1个Slot。

reference类型:与基本类型不同的是它不等同本身,即使是String,内部也是char数组组成,它可能是指向一个对象起始位置指针,也可能指向一个代表对象的句柄或其他与该对象有关的位置。

returnAddress类型:指向一条字节码指令的地址

157735421002631

需要注意的是,局部变量表所需要的内存空间在编译期完成分配,当进入一个方法时,这个方法在栈中需要分配多大的局部变量空间是完全确定的,在方法运行期间不会改变局部变量表大小。

Java虚拟机栈可能出现两种类型的异常:

  1. 线程请求的栈深度大于虚拟机允许的栈深度,将抛出StackOverflowError。
  2. 虚拟机栈空间可以动态扩展,当动态扩展是无法申请到足够的空间时,抛出OutOfMemory异常。

本地方法栈

本地方法栈是与虚拟机栈发挥的作用十分相似,区别是虚拟机栈执行的是Java方法(也就是字节码)服务,而本地方法栈则为虚拟机使用到的native方法服务,可能底层调用的c或者c++,我们打开jdk安装目录可以看到也有很多用c编写的文件,可能就是native方法所调用的c代码。

对于大多数应用来说,堆是java虚拟机管理内存最大的一块内存区域,因为堆存放的对象是线程共享的,所以多线程的时候也需要同步机制。因此需要重点了解下。

java虚拟机规范对这块的描述是:所有对象实例及数组都要在堆上分配内存,但随着JIT编译器的发展和逃逸分析技术的成熟,这个说法也不是那么绝对,但是大多数情况都是这样的。

即时编译器:可以把Java的字节码,包括需要被解释的指令的程序)转换成可以直接发送给处理器的指令的程序)

逃逸分析:通过逃逸分析来决定某些实例或者变量是否要在堆中进行分配,如果开启了逃逸分析,即可将这些变量直接在栈上进行分配,而非堆上进行分配。这些变量的指针可以被全局所引用,或者其其它线程所引用。

注意:它是所有线程共享的,它的目的是存放对象实例。同时它也是GC所管理的主要区域,因此常被称为GC堆,又由于现在收集器常使用分代算法,Java堆中还可以细分为新生代和老年代,再细致点还有Eden(伊甸园)空间之类的不做深究。

根据虚拟机规范,Java堆可以存在物理上不连续的内存空间,就像磁盘空间只要逻辑是连续的即可。它的内存大小可以设为固定大小,也可以扩展。

当前主流的虚拟机如HotPot都能按扩展实现(通过设置 -Xmx和-Xms),如果堆中没有内存内存完成实例分配,而且堆无法扩展将报OOM错误(OutOfMemoryError)

方法区

方法区同堆一样,是所有线程共享的内存区域,为了区分堆,又被称为非堆。

用于存储已被虚拟机加载的类信息、常量、静态变量,如static修饰的变量加载类的时候就被加载到方法区中。

运行时常量池是方法区的一部分,class文件除了有类的字段、接口、方法等描述信息之外,还有常量池用于存放编译期间生成的各种字面量和符号引用。

在老版jdk,方法区也被称为永久代【因为没有强制要求方法区必须实现垃圾回收,HotSpot虚拟机以永久代来实现方法区,从而JVM的垃圾收集器可以像管理堆区一样管理这部分区域,从而不需要专门为这部分设计垃圾回收机制。不过自从JDK7之后,Hotspot虚拟机便将运行时常量池从永久代移除了。】

jdk8真正开始废弃永久代,而使用元空间(Metaspace)

java虚拟机对方法区比较宽松,除了跟堆一样可以不存在连续的内存空间,定义空间和可扩展空间,还可以选择不实现垃圾收集。

内存区域相关面试题十连问

  • JVM管理的内存结构是怎样的?
  • 不同的虚拟机在实现运行时内存的时候有什么区别?
  • 运行时数据区中哪些区域是线程共享的?哪些是独享的?
  • 除了JVM运行时内存以外,还有什么区域可以用吗?
  • 堆和栈的区别是什么?
  • Java中的数组是存储在堆上还是栈上的?
  • Java中的对象创建有多少种方式?
  • Java中对象创建的过程是怎么样的?
  • Java中的对象一定在堆上分配内存吗?
  • 如何获取堆和栈的dump文件?

部分答案可以参考这个地址:JVM补充知识

垃圾回收机制

首先回顾一下

常考面试题:

  • 如何判断对象是否死亡(两种方法)?
  • 如何判断一个常量是废弃常量
  • 如何判断一个类是无用的类
  • 垃圾收集有哪些算法,各自的特点?
  • HotSpot 为什么要分为新生代和老年代?
  • 常见的垃圾回收器有那些?
  • 介绍一下 CMS,G1 收集器。
  • Minor Gc 和 Full GC 有什么不同呢?
  • Full Gc触发条件

答案参考:部分面试题【JVM】

157735423729532

堆内存常见分配策略:

  • 对象优先在eden区分配
  • 大对象直接进入老年代
  • 长期存活的对象将进入老年代

堆中几乎放着所有的对象实例,对堆垃圾回收前的第一步就是要判断那些对象已经死亡(即不能再被任何途径使用的对象)。

  • 引用计数法
  • 可达性分析算法

之后就是不同的垃圾回收算法

  • 标记-清除

  • 标记-整理

  • 复制

  • 分代收集算法

    比如在新生代中,每次收集都会有大量对象死去,所以可以选择复制算法,只需要付出少量对象的复制成本就可以完成每次垃圾收集。而老年代的对象存活几率是比较高的,而且没有额外的空间对它进行分配担保,所以我们必须选择“标记-清除”或“标记-整理”算法进行垃圾收集。

    延伸面试问题: HotSpot 为什么要分为新生代和老年代?根据上面的对分代收集算法的介绍回答。

如果说收集算法是内存回收的方法论,那么垃圾收集器就是内存回收的具体实现。虽然我们对各个收集器进行比较,但并非要挑选出一个最好的收集器。因为直到现在为止还没有最好的垃圾收集器出现,更加没有万能的垃圾收集器,我们能做的就是根据具体应用场景选择适合自己的垃圾收集器。试想一下:如果有一种四海之内、任何场景下都适用的完美收集器存在,那么我们的 HotSpot 虚拟机就不会实现那么多不同的垃圾收集器了。

其中CMS和G1是需要重点掌握。

  • Serial收集器
  • ParNew收集器
  • Parallel Scavenge收集器
  • Serial Old收集器
  • Parallel Old收集器
  • CMS收集器
  • G1收集器

加载类

类加载机制

Class 文件需要加载到虚拟机中之后才能运行和使用,那么虚拟机是如何加载这些 Class 文件呢?

系统加载 Class 类型的文件主要三步:加载->连接->初始化。连接过程又可分为三步:验证->准备->解析

加载

类加载过程的第一步,主要完成下面3件事情:

  1. 通过全类名获取定义此类的二进制字节流
  2. 将字节流所代表的静态存储结构转换为方法区的运行时数据结构
  3. 在内存中生成一个代表该类的 Class 对象,作为方法区这些数据的访问入口

验证

157735426518212

准备

准备阶段是正式为类变量分配内存并设置类变量初始值的阶段,这些内存都将在方法区中分配。对于该阶段有以下几点需要注意:

  1. 这时候进行内存分配的仅包括类变量(static),而不包括实例变量,实例变量会在对象实例化时随着对象一块分配在 Java 堆中。
  2. 这里所设置的初始值”通常情况”下是数据类型默认的零值(如0、0L、null、false等),比如我们定义了public static int value=111 ,那么 value 变量在准备阶段的初始值就是 0 而不是111(初始化阶段才会复制)。特殊情况:比如给 value 变量加上了 fianl 关键字public static final int value=111 ,那么准备阶段 value 的值就被复制为 111。

基本数据类型的零值:

157735432892840

解析

解析阶段是虚拟机将常量池内的符号引用替换为直接引用的过程。解析动作主要针对类或接口、字段、类方法、接口方法、方法类型、方法句柄和调用限定符7类符号引用进行。

符号引用就是一组符号来描述目标,可以是任何字面量。直接引用就是直接指向目标的指针、相对偏移量或一个间接定位到目标的句柄。在程序实际运行时,只有符号引用是不够的,举个例子:在程序执行方法时,系统需要明确知道这个方法所在的位置。Java 虚拟机为每个类都准备了一张方法表来存放类中所有的方法。当需要调用一个类的方法的时候,只要知道这个方法在方发表中的偏移量就可以直接调用该方法了。通过解析操作符号引用就可以直接转变为目标方法在类中方法表的位置,从而使得方法可以被调用。

综上,解析阶段是虚拟机将常量池内的符号引用替换为直接引用的过程,也就是得到类或者字段、方法在内存中的指针或者偏移量。

初始化

初始化是类加载的最后一步,也是真正执行类中定义的 Java 程序代码(字节码),初始化阶段是执行类构造器 <clinit> ()方法的过程。

对于<clinit>() 方法的调用,虚拟机会自己确保其在多线程环境中的安全性。因为 <clinit>() 方法是带锁线程安全,所以在多线程环境下进行类初始化的话可能会引起死锁,并且这种死锁很难被发现。

对于初始化阶段,虚拟机严格规范了有且只有5种情况下,必须对类进行初始化:

  1. 当遇到 new 、 getstatic、putstatic或invokestatic 这4条直接码指令时,比如 new 一个类,读取一个静态字段(未被 final 修饰)、或调用一个类的静态方法时。
  2. 使用 java.lang.reflect 包的方法对类进行反射调用时 ,如果类没初始化,需要触发其初始化。
  3. 初始化一个类,如果其父类还未初始化,则先触发该父类的初始化。
  4. 当虚拟机启动时,用户需要定义一个要执行的主类 (包含 main 方法的那个类),虚拟机会先初始化这个类。
  5. 当使用 JDK1.7 的动态动态语言时,如果一个 MethodHandle 实例的最后解析结构为 REF_getStatic、REF_putStatic、REF_invokeStatic、的方法句柄,并且这个句柄没有初始化,则需要先触发器初始化。

类加载器

所有的类都由类加载器加载,加载的作用就是将 .class文件加载到内存。

JVM 中内置了三个重要的 ClassLoader,除了 BootstrapClassLoader 其他类加载器均由 Java 实现且全部继承自java.lang.ClassLoader

  1. BootstrapClassLoader(启动类加载器) :最顶层的加载类,由C++实现,负责加载 %JAVA_HOME%/lib目录下的jar包和类或者或被 -Xbootclasspath参数指定的路径中的所有类。
  2. ExtensionClassLoader(扩展类加载器) :主要负责加载目录 %JRE_HOME%/lib/ext 目录下的jar包和类,或被 java.ext.dirs 系统变量所指定的路径下的jar包。
  3. AppClassLoader(应用程序类加载器) :面向我们用户的加载器,负责加载当前应用classpath下的所有jar包和类

常考面试题:

  • 如何理解双亲委派和破坏双亲委派?
  • 描述一下 JVM 加载 class?

Java对象创建

对象创建过程

下图便是 Java 对象的创建过程,我建议最好是能默写出来,并且要掌握每一步在做什么。

157735437426072

157735438843023

Step1:类加载检查

虚拟机遇到一条 new 指令时,首先将去检查这个指令的参数是否能在常量池中定位到这个类的符号引用,并且检查这个符号引用代表的类是否已被加载过、解析和初始化过。如果没有,那必须先执行相应的类加载过程。

Step2:分配内存

类加载检查通过后,接下来虚拟机将��新生对象分配内存。对象所需的内存大小在类加载完成后便可确定,为对象分配空间的任务等同于把一块确定大小的内存从 Java 堆中划分出来。分配方式“指针碰撞”“空闲列表” 两种,选择那种分配方式由 Java 堆是否规整决定,而 Java 堆是否规整又由所采用的垃圾收集器是否带有压缩整理功能决定

内存分配的两种方式:(补充内容,需要掌握)

选择以上两种方式中的哪一种,取决于 Java 堆内存是否规整。而 Java 堆内存是否规整,取决于 GC 收集器的算法是”标记-清除”,还是”标记-整理”(也称作”标记-压缩”),值得注意的是,复制算法内存也是规整的

157735446900682

内存分配并发问题(补充内容,需要掌握)

在创建对象的时候有一个很重要的问题,就是线程安全,因为在实际开发过程中,创建对象是很频繁的事情,作为虚拟机来说,必须要保证线程是安全的,通常来讲,虚拟机采用两种方式来保证线程安全:

  • CAS+失败重试: CAS 是乐观锁的一种实现方式。所谓乐观锁就是,每次不加锁而是假设没有冲突而去完成某项操作,如果因为冲突失败就重试,直到成功为止。虚拟机采用 CAS 配上失败重试的方式保证更新操作的原子性。
  • TLAB: 为每一个线程预先在 Eden 区分配一块儿内存,JVM 在给线程中的对象分配内存时,首先在 TLAB 分配,当对象大于 TLAB 中的剩余内存或 TLAB 的内存已用尽时,再采用上述的 CAS 进行内存分配

Step3:初始化零值

内存分配完成后,虚拟机需要将分配到的内存空间都初始化为零值(不包括对象头),这一步操作保证了对象的实例字段在 Java 代码中可以不赋初始值就直接使用,程序能访问到这些字段的数据类型所对应的零值。

Step4:设置对象头

初始化零值完成之后,虚拟机要对对象进行必要的设置,例如这个对象是那个类的实例、如何才能找到类的元数据信息、对象的哈希码、对象的 GC 分代年龄等信息。 这些信息存放在对象头中。 另外,根据虚拟机当前运行状态的不同,如是否启用偏向锁等,对象头会有不同的设置方式。

Step5:执行 init 方法

在上面工作都完成之后,从虚拟机的视角来看,一个新的对象已经产生了,但从 Java 程序的视角来看,对象创建才刚开始,<init> 方法还没有执行,所有的字段都还为零。所以一般来说,执行 new 指令之后会接着执行 <init> 方法,把对象按照程序员的意愿进行初始化,这样一个真正可用的对象才算完全产生出来。

对象的内存布局

在 Hotspot 虚拟机中,对象在内存中的布局可以分为 3 块区域:对象头实例数据对齐填充

Hotspot 虚拟机的对象头包括两部分信息第一部分用于存储对象自身的自身运行时数据(哈希码、GC 分代年龄、锁状态标志等等),另一部分是类型指针,即对象指向它的类元数据的指针,虚拟机通过这个指针来确定这个对象是那个类的实例。

实例数据部分是对象真正存储的有效信息,也是在程序中所定义的各种类型的字段内容。

对齐填充部分不是必然存在的,也没有什么特别的含义,仅仅起占位作用。 因为 Hotspot 虚拟机的自动内存管理系统要求对象起始地址必须是 8 字节的整数倍,换句话说就是对象的大小必须是 8 字节的整数倍。而对象头部分正好是 8 字节的倍数(1 倍或 2 倍),因此,当对象实例数据部分没有对齐时,就需要通过对齐填充来补全。

对象的访问定位

建立对象就是为了使用对象,我们的 Java 程序通过栈上的 reference 数据来操作堆上的具体对象。对象的访问方式由虚拟机实现而定,目前主流的访问方式有①使用句柄和②直接指针两种:

  1. 句柄: 如果使用句柄的话,那么 Java 堆中将会划分出一块内存来作为句柄池,reference 中存储的就是对象的句柄地址,而句柄中包含了对象实例数据与类型数据各自的具体地址信息;

157735451566510

2. 直接指针: 如果使用直接指针访问,那么 Java 堆对象的布局中就必须考虑如何放置访问类型数据的相关信息,而 reference 中存储的直接就是对象的地址。

img

这两种对象访问方式各有优势。使用句柄来访问的最大好处是 reference 中存储的是稳定的句柄地址,在对象被移动时只会改变句柄中的实例数据指针,而 reference 本身不需要修改。使用直接指针访问方式最大的好处就是速度快,它节省了一次指针定位的时间开销。

其他补充

String类和常量池

String 对象的两种创建方式:

String str1 = "abcd";//先检查字符串常量池中有没有"abcd",如果字符串常量池中没有,则创建一个,然后 str1 指向字符串常量池中的对象,如果有,则直接将 str1 指向"abcd"";
String str2 = new String("abcd");//堆中创建一个新的对象
String str3 = new String("abcd");//堆中创建一个新的对象
System.out.println(str1==str2);//false
System.out.println(str2==str3);//false

这两种不同的创建方法是有差别的。

  • 第一种方式是在常量池中拿对象;
  • 第二种方式是直接在堆内存空间创建一个新的对象。

记住一点:只要使用 new 方法,便需要创建新的对象。

String 类型的常量池比较特殊。它的主要使用方法有两种:

  • 直接使用双引号声明出来的 String 对象会直接存储在常量池中。

  • 如果不是用双引号声明的 String 对象,可以使用 String 提供的 intern 方法。String.intern() 是一个 Native 方法,它的作用是:如果运行时常量池中已经包含一个等于此 String 对象内容的字符串,则返回常量池中该字符串的引用;如果没有,JDK1.7之前(不包含1.7)的处理方式是在常量池中创建与此 String 内容相同的字符串,并返回常量池中创建的字符串的引用,JDK1.7以及之后的处理方式是在常量池中记录此字符串的引用,并返回该引用。

    更多请参考String intern方法1.6与1.7区别

String s1 = new String(“abc”);这句话创建了几个字符串对象

将创建 1 或 2 个字符串。如果池中已存在字符串常量“abc”,则只会在堆空间创建一个字符串常量“abc”。如果池中没有字符串常量“abc”,那么它将首先在池中创建,然后在堆空间中创建,因此将创建总共 2 个字符串对象。

验证:

    String s1 = new String("abc");// 堆内存的地址值
    String s2 = "abc";
    System.out.println(s1 == s2);// 输出 false,因为一个是堆内存,一个是常量池的内存,故两者是不同的。
    System.out.println(s1.equals(s2));// 输出 true

结果:

false
true

8 种基本类型的包装类和常量池

  • Java 基本类型的包装类的大部分都实现了常量池技术,即 Byte,Short,Integer,Long,Character,Boolean;这 5 种包装类默认创建了数值[-128,127] 的相应类型的缓存数据,但是超出此范围仍然会去创建新的对象。

    为什么把缓存设置为[-128,127]区间?

    • 技术规范

    • 性能和资源之间的权衡(当然也可以调整缓存的正向最大值,自己看 IntegerCache 类的实现)

      Integer 缓存源代码:

      /**
      *此方法将始终缓存-128 到 127(包括端点)范围内的值,并可以缓存此范围之外的其他值。
      */
          public static Integer valueOf(int i) {
              if (i >= IntegerCache.low && i <= IntegerCache.high)
                  return IntegerCache.cache[i + (-IntegerCache.low)];
              return new Integer(i);
          }
      
  • 两种浮点数类型的包装类 Float,Double 并没有实现常量池技术

        Integer i1 = 33;
        Integer i2 = 33;
        System.out.println(i1 == i2);// 输出 true
        Integer i11 = 333;
        Integer i22 = 333;
        System.out.println(i11 == i22);// 输出 false
        Double i3 = 1.2;
        Double i4 = 1.2;
        System.out.println(i3 == i4);// 输出 false
    

内存分配策略

  • 对象优先在 Eden 分配
    大多数情况下,对象在新生代 Eden 上分配,当 Eden 空间不够时,发起 Minor GC。
  • 大对象直接进入老年代
    大对象是指需要连续内存空间的对象,最典型的大对象是那种很长的字符串以及数组。

经常出现大对象会提前触发垃圾收集以获取足够的连续空间分配给大对象。

-XX:PretenureSizeThreshold,大于此值的对象直接在老年代分配,避免在 Eden 和 Survivor 之间的大量内存复制。

  • 长期存活的对象进入老年代
    为对象定义年龄计数器,对象在 Eden 出生并经过 Minor GC 依然存活,将移动到 Survivor 中,年龄就增加 1 岁,增加到一定年龄则移动到老年代中。

-XX:MaxTenuringThreshold 用来定义年龄的阈值。

  • 动态对象年龄判定
    虚拟机并不是永远要求对象的年龄必须达到 MaxTenuringThreshold 才能晋升老年代,如果在 Survivor 中相同年龄所有对象大小的总和大于 Survivor 空间的一半,则年龄大于或等于该年龄的对象可以直接进入老年代,无需等到 MaxTenuringThreshold 中要求的年龄

如何判断一个常量是废弃常量

运行时常量池主要回收的是废弃的常量。那么,我们如何判断一个常量是废弃常量呢?

假如在常量池中存在字符串 “abc”,如果当前没有任何String对象引用该字符串常量的话,就说明常量 “abc” 就是废弃常量,如果这时发生内存回收的话而且有必要的话,”abc” 就会被系统清理出常量池。

如何判断一个类是无用的类

方法区主要回收的是无用的类,那么如何判断一个类是无用的类的呢?

判定一个常量是否是“废弃常量”比较简单,而要判定一个类是否是“无用的类”的条件则相对苛刻许多。类需要同时满足下面 3 个条件才能算是 “无用的类” :

  • 该类所有的实例都已经被回收,也就是 Java 堆中不存在该类的任何实例。
  • 加载该类的 ClassLoader 已经被回收。
  • 该类对应的 java.lang.Class 对象没有在任何地方被引用,无法在任何地方通过反射访问该类的方法。

虚拟机可以对满足上述 3 个条件的无用类进行回收,这里说的仅仅是“可以”,而并不是和对象一样不使用了就会必然被回收。

数组类本身并不是由类加载器负责创建的

【结论】数组类本身并不是由类加载器负责创建的,而是由JVM直接在内存中动态构造出来的

理解:
String[] Student[] Integer[] int[]

【结论】数组不是类加载器创建的而是java虚拟机直接创建的,知道这个结论就可以了,因为数组不属于类

165547629342870

核心就是:
创建数组类的过程:
1、如果数组的元素类型是引用类型,那么就遵循定义的加载过程递归加载和创建数组的元素类型。
2、JVM使用指定的元素类型和数组维度来创建新的数组类。
引导类加载器,又叫启动类加载器,就是最核心的类加载器。

对象和数组并非都是在堆上分配内存的

《深入理解 Java 虚拟机中》关于 Java 堆内存有这样一段描述:随着 JIT 编译期的发展与逃逸分析技术逐渐成熟,栈上分配,标量替换优化技术将会导致一些变化,所有的对象都分配到堆上也渐渐变得不那么”绝对”了。
这是一种可以有效减少 Java 内存堆分配压力的分析算法,通过逃逸分析,Java Hotspot 编译器能够分析出一个新的对象的引用的使用范围从而决定是否要将这个对象分配到堆上。
当一个对象在方法中被定义后,它可能被外部方法所引用,如作为调用参数传递到其他地方中,称为方法逃逸。
再如赋值给类变量或可以在其他线程中访问的实例变量,称为线程逃逸

TLAB

【知道大概就行】
TLAB 的全称是 Thread Local Allocation Buffer,即线程本地分配缓存区,是属于 Eden 区的,这是一个线程专用的内存分配区域,线程私有,默认开启的(当然也不是绝对的,也要看哪种类型的虚拟机)
堆是全局共享的, 在同一时间,可能会有多个线程在堆上申请空间,但每次的对象分配需要同步的进行(虚拟机采用 CAS 配上失败重试的方式保证更新操作的原子性)但是效率却有点下降
所以用 TLAB 来避免多线程冲突,在给对象分配内存时,每个线程使用自己的 TLAB,这样可以使得线程同步,提高了对象分配的效率
当然并不是所有的对象都可以在 TLAB 中分配内存成功,如果失败了就会使用加锁的机制来保持操作的原子性
-XX:+UseTLAB使用 TLAB,-XX:+TLABSize 设置 TLAB 大小

创建对象的多种方式

假定一个类:

@Data
@NoArgsConstructor
@AllArgsConstructor
class GirlFriend {
 	private String name;
}

方法1:new 一个对象

@Test
public void girlFriend1() {
    GirlFriend girlFriend = new GirlFriend("new一个对象");
    System.out.println(girlFriend);
}

方法2:克隆一个对象

@Data
@NoArgsConstructor
@AllArgsConstructor
class GirlFriend implements Cloneable {
 private String name;
    @Override
    protected Object clone() throws CloneNotSupportedException {
        return super.clone();
    }
}

方法3:类派发一个对象(反射)

@Test
public void girlFriend3() throws InstantiationException, IllegalAccessException {
    GirlFriend girlFriend = GirlFriend.class.newInstance();
    girlFriend.setName("类派发一个对象");
    System.out.println(girlFriend);
}

方法4:动态加载一个对象(反射)

@Test
public void girlFriend4() throws InstantiationException, IllegalAccessException, ClassNotFoundException {
    GirlFriend girlFriend = (GirlFriend) Class.forName("cn.javastack.test.jdk.core.GirlFriend").newInstance();
    girlFriend.setName("反射一个对象");
    System.out.println(girlFriend);
}

方法5:构造一个对象(反射)

@Test
public void girlFriend5() throws NoSuchMethodException, InvocationTargetException, InstantiationException, IllegalAccessException {
    GirlFriend girlFriend = GirlFriend.class.getConstructor().newInstance();
    girlFriend.setName("构造一个对象");
    System.out.println(girlFriend);
}

方法6:反序列化一个对象

@Data
@NoArgsConstructor
@AllArgsConstructor
class GirlFriend implements Cloneable, Serializable {
    private static final long serialVersionUID = 1L;
    private String name;
    @Override
    protected Object clone() throws CloneNotSupportedException {
        return super.clone();
    }
}
序列化/反序列化对象示例代码:
@Test
public void girlFriend6() throws IOException, ClassNotFoundException {
    GirlFriend girlFriend1 = new GirlFriend("反序列化一个对象");
    // 序列化一个女朋友
    ObjectOutputStream objectOutputStream = new ObjectOutputStream(new FileOutputStream("gf.obj"));
    objectOutputStream.writeObject(girlFriend1);
    objectOutputStream.close();
    // 反序列化出来
    ObjectInputStream objectInputStream = new ObjectInputStream(new FileInputStream("gf.obj"));
    GirlFriend girlFriend2 = (GirlFriend) objectInputStream.readObject();
    objectInputStream.close();
    System.out.println(girlFriend2);
}

JDK监控和故障处理工具

JVM配置常用参数,GC常用调优策略

堆内存相关

显式指定堆内存-Xms 和 -Xmx

与性能有关的最常见实践之一是根据应用程序要求初始化堆内存。如果我们需要指定最小和最大堆大小(推荐显示指定大小),以下参数可以帮助你实现:

-Xms<heap size>[unit] 
-Xmx<heap size>[unit]
  • heap size 表示要初始化内存的具体大小。
  • unit 表示要初始化内存的单位。单位为“ g”* (GB) 、“ m”*(MB)、*“ k”*(KB)

比如,如果我们要为JVM分配最小2 GB和最大5 GB的堆内存大小,我们的参数应该这样来写:

-Xms2G -Xmx5G

显式新生代内存(Young Ceneration)

根据Oracle官方文档,在堆总可用内存配置完成之后,第二大影响因素是为 Young Generation 在堆内存所占的比例。默认情况下,YG 的最小大小为 1310 MB,最大大小为无限制

一共有两种指定 新生代内存(Young Ceneration)大小的方法:

1.通过-XX:NewSize和-XX:MaxNewSize指定

-XX:NewSize=<young size>[unit] 
-XX:MaxNewSize=<young size>[unit]

比如,如果我们要为 新生代分配 最小256m 的内存,最大 1024m的内存我们的参数应该这样来写:

-XX:NewSize=256m
-XX:MaxNewSize=1024m

2.通过-Xmn[unit] 指定

比如,如果我们要为 新生代分配256m的内存(NewSize与MaxNewSize设为一致),我们的参数应该这样来写:

-Xmn256m

GC 调优策略中很重要的一条经验总结是这样说的:

将新对象预留在新生代,由于 Full GC 的成本远高于 Minor GC,因此尽可能将对象分配在新生代是明智的做法,实际项目中根据 GC 日志分析新生代空间大小分配是否合理,适当通过“-Xmn”命令调节新生代大小,最大限度降低新对象直接进入老年代的情况。

另外,你还可以通过-XX:NewRatio=<int>来设置新生代和老年代内存的比值。

比如下面的参数就是设置新生代(包括Eden和两个Survivor区)与老年代的比值为1。也就是说:新生代与老年代所占比值为1:1,新生代占整个堆栈的 1/2。

-XX:NewRatio=1

显示指定永久代/元空间的大小

从Java 8开始,如果我们没有指定 Metaspace 的大小,随着更多类的创建,虚拟机会耗尽所有可用的系统内存(永久代并不会出现这种情况)。

JDK 1.8 之前永久代还没被彻底移除的时候通常通过下面这些参数来调节方法区大小

-XX:PermSize=N //方法区 (永久代) 初始大小
-XX:MaxPermSize=N //方法区 (永久代) 最大大小,超过这个值将会抛出 OutOfMemoryError 异常:java.lang.OutOfMemoryError: PermGen

相对而言,垃圾收集行为在这个区域是比较少出现的,但并非数据进入方法区后就“永久存在”了。

JDK 1.8 的时候,方法区(HotSpot 的永久代)被彻底移除了(JDK1.7 就已经开始了),取而代之是元空间,元空间使用的是直接内存。

下面是一些常用参数:

-XX:MetaspaceSize=N //设置 Metaspace 的初始(和最小大小)
-XX:MaxMetaspaceSize=N //设置 Metaspace 的最大大小,如果不指定大小的话,随着更多类的创建,虚拟机会耗尽所有可用的系统内存。

常用GC调优策略

  1. GC 调优原则;
  2. GC 调优目的;
  3. GC 调优策略;

GC 调优原则

在调优之前,我们需要记住下面的原则:

多数的 Java 应用不需要在服务器上进行 GC 优化; 多数导致 GC 问题的 Java 应用,都不是因为我们参数设置错误,而是代码问题; 在应用上线之前,先考虑将机器的 JVM 参数设置到最优(最适合); 减少创建对象的数量; 减少使用全局变量和大对象; GC 优化是到最后不得已才采用的手段; 在实际使用中,分析 GC 情况优化代码比优化 GC 参数要多得多。

GC 调优目的

将转移到老年代的对象数量降低到最小; 减少 GC 的执行时间。

GC 调优策略

策略 1:将新对象预留在新生代,由于 Full GC 的成本远高于 Minor GC,因此尽可能将对象分配在新生代是明智的做法,实际项目中根据 GC 日志分析新生代空间大小分配是否合理,适当通过“-Xmn”命令调节新生代大小,最大限度降低新对象直接进入老年代的情况。

策略 2:大对象进入老年代,虽然大部分情况下,将对象分配在新生代是合理的。但是对于大对象这种做法却值得商榷,大对象如果首次在新生代分配可能会出现空间不足导致很多年龄不够的小对象被分配的老年代,破坏新生代的对象结构,可能会出现频繁的 full gc。因此,对于大对象,可以设置直接进入老年代(当然短命的大对象对于垃圾回收老说简直就是噩梦)。-XX:PretenureSizeThreshold 可以设置直接进入老年代的对象大小。

策略 3:合理设置进入老年代对象的年龄,-XX:MaxTenuringThreshold 设置对象进入老年代的年龄大小,减少老年代的内存占用,降低 full gc 发生的频率。

策略 4:设置稳定的堆大小,堆大小设置有两个参数:-Xms 初始化堆大小,-Xmx 最大堆大小。

策略5:注意: 如果满足下面的指标,则一般不需要进行 GC 优化:

MinorGC 执行时间不到50ms; Minor GC 执行不频繁,约10秒一次; Full GC 执行时间不到1s; Full GC 执行频率不算频繁,不低于10分钟1次。

真题与易错题复习

真题复习

【阿里巴巴Java笔试题】
二、【单选题】下面有关JVM内存,说法错误的是?
A. 程序计数器是一个比较小的内存区域,用于指示当前线程所执行的字节码执行到了第几行,是线程隔离的
B. Java虚拟机栈,用于存储局部变量,操作数栈,动态链接,方法出口等信息,是线程隔离的
C. 方法区用于存储JVM加载的类信息、常量、静态变量、即使编译器编译后的代码等数据,是线程隔离的
D. 原则上讲,所有的对象都在堆区上分配内存,是线程之间共享的
正确答案为C

运行时数据区包括:虚拟机栈区,堆区,方法区,本地方法栈,程序计数器
虚拟机栈区 :也就是我们常说的栈区,线程私有,存放基本类型,对象的引用和 returnAddress ,在编译期间完成分配。
堆区 , JAVA 堆,也称 GC 堆,所有线程共享,存放对象的实例和数组, JAVA 堆是垃圾收集器管理的主要区域。
方法区 :所有线程共享,存储已被虚拟机加载的类信息,常量,静态变量,即时编译器编译后的代码等数据。这个区域的内存回收目标主要是针对常量池的对象的回收和对类型的卸载。
程序计数器 :线程私有,每个线程都有自己独立的程序计数器,用来指示下一条指令的地址

选择题总是有技巧的:C中静态变量肯定是共享的啊,怎么可能是线程隔离的呢?肯定选C

【阿里巴巴笔试题】
四、【单选题】下面哪种情况会导致持久区jvm堆内存溢出?
A.循环上万次的字符串对象处理
B.在一段代码内申请上百M甚至上G的内存
C.使用CGLib技术直接操作字节码运行,生成大量的动态类
D.不断创建对象
正确答案为:C

简单的来说 java的堆内存分为两块:permantspace(持久代) 和 heap space,持久区中主要存放用于存放静态类型数据,如 Java Class, Method 等, 与垃圾收集器要收集的Java对象关系不大。 而heapspace分为年轻代和年老代 ,年轻代的垃圾回收叫 Young GC, 年老代的垃圾回收叫 Full GC。

在年轻代中经历了N次(可配置)垃圾回收后仍然存活的对象,就会被复制到年老代中。因此,可以认为年老代中存放的都是一些生命周期较长的对象

年老代溢出原因有 循环上万次的字符串对象处理、创建上千万个对象、在一段代码内申请上百M甚至上G的内存,既A B D选项

持久代溢出原因 动态加载了大量Java类而导致溢出

【人人网笔试题】
五、【单选题】以下哪项陈述是正确的?
A.垃圾回收线程的优先级很高,以保证不再 使用的内存将被及时回收
B.垃圾收集允许程序开发者明确指定释放 哪一个对象
C.垃圾回收机制保证了JAVA程序不会出现 内存溢出
D.进入”Dead”状态的线程将被垃圾回收器回收
E.以上都不对
正确答案为:E

当程序运行时,至少会有两个线程开启启动,一个是我们的主线程,一个是垃圾回收线程,垃圾回收线程的priority(优先级)较低
垃圾回收器会对我们使用的对象进行监视,当一个对象长时间不使用时,垃圾回收器会在空闲的时候(不定时)对对象进行回收,释放内存空间,程序员是不可以显示的调用垃圾回收器回收内存的,但是可以使用System.gc()方法建议垃圾回收器进行回收,但是垃圾回收器不一定会执行。
Java的垃圾回收机制可以有效的防止内存溢出问题,但是它并不能完全保证不会出现内存溢出。例如当程序出现严重的问题时,也可能出现内存溢出问题。
A: 垃圾回收在jvm中优先级相当相当低。
B:垃圾收集器(GC)程序开发者只能推荐JVM进行回收,但何时回收,回收哪些,程序员不能控制。
C:垃圾回收机制只是回收不再使用的JVM内存,如果程序有严重BUG,照样内存溢出。
D:进入DEAD的线程,它还可以恢复,GC不会回收

面试问题补充

  1. 能否自己定义java.lang.String

    分析:考察的是类加载器知识。

    答案:可以自己定义,但永远不会被加载。不会被加载的原因是双亲委派模型的存在,java.lang.*是java的核心类,根据双亲委派模型,会有启动类加载器 完成加载任务返回,因此自己定义的类永远不会被加载。

  2. ClassCastException发生在哪步,ClassNotFoundException发生在哪步

    分析:这道题考核的是类加载机制

    答案:ClassNotFoundException发生在加载(装载)阶段,ClassCastException发生在连接阶段(连接阶段的验证过程中)

  3. 垃圾回收算法与垃圾回收器,如何设置,吞吐优先与影响优先,实际项目中G1与CMS对比?

  4. 为什么会有两个Survior?

  5. tomcat中如何设计java相关参数

  6. Minor Gc与Full GC的区别?如何防止Full GC? Java中可以手工回收对象么

  7. 如何监控JVM,相关命令:jconsole,jmap,jstat

  8. 接手一个项目,发现程序执行到一半挂在那了,如何解决?

  9. OutOfMemory与Jvm crash的区别,碰到后如何解决

  10. 初始化详细理解

  11. 其他

答案参考:JVM常见考核问题

posted @ 2022-08-03 22:48  Faetbwac  阅读(131)  评论(0编辑  收藏  举报