匈牙利算法(二分图最大匹配)
从左边开始,看每个点能不能匹配到右边的一个点
如果连到的点没被匹配( \(p[j] == 0\) )匹配成功
如果连到的点被匹配了,看这个点原来匹配的左面的点,能不能匹配别的右面的点( \(match(p[j])\) )
int M, N; //M, N分别表示左、右侧集合的元素数量
int Map[MAXM][MAXN]; //邻接矩阵存图
int p[MAXN]; //记录当前右侧元素所对应的左侧元素
bool vis[MAXN]; //记录右侧元素是否已被访问过
bool match(int i)
{
for (int j = 1; j <= N; ++j)
if (Map[i][j] && !vis[j]) //有边且未访问
{
vis[j] = true; //记录状态为访问过
if (p[j] == 0 || match(p[j])) //如果暂无匹配,或者原来匹配的左侧元素可以找到新的匹配
{
p[j] = i; //当前左侧元素成为当前右侧元素的新匹配
return true; //返回匹配成功
}
}
return false; //循环结束,仍未找到匹配,返回匹配失败
}
int Hungarian()
{
int cnt = 0;
for (int i = 1; i <= M; ++i)
{
memset(vis, 0, sizeof(vis)); //重置vis数组
if(match(i)) cnt++;
}
return cnt;
}