ioi2018集训队自选题:最短路练习题
题意:链接
定义pos[i]表示i这个值在数组里的下标.
我们先用单调栈找到每个元素左边和右边第一个比它大的元素$l_i$和$r_i$,然后建一棵二叉树,我们就叫做maxtree吧 (upd:mdzz 这就是笛卡尔树)
每个点$i$的父亲是$pos[max(l_i,r_i)]$,如果是$r_i$比较大,那么$i$就是左儿子,$l_i$比较大同理。
当$i$是左儿子时,容易证出$pos[l_i]$在树上的位置就是$i$不停向上走时第一次向左上走遇到的点,反之亦然,设$gfa[x]$表示$x$连向的点中非$fa[x]$的点。
对于每个询问,我们先求出$x,y$的$lca t$,如果$t$不为$x$和$y$,那么最短路上要么经过$t$,要么经过$fa[t]$,这个也很好证(大概就是如果$t$是左儿子,那么$t$的左子树中的点不可能向$fa[t]$上边连边,右边同理)。
定义函数$dis(x,y)$表示$x$到$y$的最短路,其中$y$是$x$的祖先。
当$dep[g[fa[x]]]>=dep[y]$时,显然走$gfa$比较优,然后再在最后一步的时候两种方案取个$min$就行了,问题解决。
#include<bits/stdc++.h>
#define N 100005
using namespace std;
int n,m;
int a[N];
int st[N],ll[N],rr[N],top;
int ch[N][2];
int fa[N][22],fs[N][22],dep[N];
void dfs(int x,int pr,int op)
{
if(ch[x][0])
{
fs[ch[x][0]][0]=x;
dep[ch[x][0]]=dep[x]+1;
if(op==0)
{
fa[ch[x][0]][0]=pr;
dfs(ch[x][0],pr,op);
}
else dfs(ch[x][0],x,op);
}
if(ch[x][1])
{
fs[ch[x][1]][0]=x;
dep[ch[x][1]]=dep[x]+1;
if(op==1)
{
fa[ch[x][1]][0]=pr;
dfs(ch[x][1],pr,op);
}
else dfs(ch[x][1],x,op);
}
return ;
}
void yu()
{
for(int i=1;i<=17;i++)
{
for(int j=1;j<=n;j++)
{
fa[j][i]=fa[fa[j][i-1]][i-1];
fs[j][i]=fs[fs[j][i-1]][i-1];
}
}
}
int lca(int x,int y)
{
if(dep[x]<dep[y])swap(x,y);
for(int i=17;i>=0;i--)if(dep[fs[x][i]]>=dep[y])x=fs[x][i];
if(x==y)return x;
for(int i=17;i>=0;i--)
{
if(fs[x][i]!=fs[y][i])
{
x=fs[x][i];y=fs[y][i];
}
}
return fs[x][0];
}
int dis(int x,int y)
{
int ans=0;
for(int i=17;i>=0;i--)
{
if(dep[fa[x][i]]>=dep[y])
{
ans+=(1<<i);
x=fa[x][i];
}
}
if(!fa[x][0])return ans+dep[x]-dep[y];
return ans+min(dep[x]-dep[y],2);
}
int solve(int x,int y)
{
if(dep[x]<dep[y])swap(x,y);
int t=lca(x,y);
if(t==y)return dis(x,y);
int tmp=dis(x,t)+dis(y,t);
if(t!=1)tmp=min(tmp,dis(x,fs[t][0])+dis(y,fs[t][0]));
return tmp;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
}
for(int i=1;i<=n;i++)
{
while(top&&a[st[top]]<a[i])top--;
if(top)ll[i]=st[top];
st[++top]=i;
}
top=0;
for(int i=n;i>=1;i--)
{
while(top&&a[st[top]]<a[i])top--;
if(top)rr[i]=st[top];
st[++top]=i;
}
ch[1][1]=n;
for(int i=2;i<=n-1;i++)
{
if(a[ll[i]]<a[rr[i]])ch[ll[i]][1]=i;
else ch[rr[i]][0]=i;
}
dep[1]=1;dfs(1,0,0);dfs(1,0,1);
yu();
int t1,t2;
for(int i=1;i<=m;i++)
{
scanf("%d%d",&t1,&t2);
printf("%d\n",solve(t1,t2));
}
return 0;
}