bzoj 3667 Rabin-Miller算法
#include<iostream> #include<cstdio> #include<algorithm> #include<cstring> #include<cmath> #define ll long long using namespace std; int n; ll x,mx; ll gcd(ll a,ll b) { if(!b)return a; return gcd(b,a%b); } i64 mul(i64 a,i64 b,i64 c){ if(c<=2000000000ll)return a*b%c; i64 r=a*b-i64(ld(a)/c*b)*c; if(r>=c||r<=-c)r%=c; return r>=0?r:r+c; } ll pow(ll a,ll b,ll p) { ll ans=1;a%=p; while(b) { if(b&1)ans=mul(a,ans,p); b>>=1; a=mul(a,a,p); } return ans; } bool check(ll rd,ll n,ll r,ll s) { ll ans=pow(rd,r,n),p=ans; for(int i=1;i<=s;i++) { ans=mul(ans,ans,n); if(ans==1&&p!=1&&p!=n-1)return 1; p=ans; } if(ans!=1)return 1; return 0; } bool MR(ll n) { if(n<=1)return 0; if(n==2)return 1; if(n%2==0)return 0; ll r=n-1,s=0; while(r%2==0)r/=2,s++; for(int i=0;i<10;i++) { if(check(rand()%(n-1)+1,n,r,s))return 0; } return 1; } ll rho(ll n,ll c) { ll k=2,x=rand()%n,y=x,p=1; for(ll i=1;p==1;i++) { x=(mul(x,x,n)+c)%n; if(y>x)p=y-x; else p=x-y; p=gcd(n,p); if(i==k)y=x,k+=k; } return p; } void solve(ll n) { if(n==1)return ; if(MR(n)){mx=max(n,mx);return;} ll t=n; while(t==n)t=rho(n,rand()%(n-1)+1); solve(t); solve(n/t); } int main() { scanf("%d",&n); while(n--) { scanf("%lld",&x); mx=0; solve(x); if(mx==x)puts("Prime"); else printf("%lld\n",mx); } return 0; }