《凤凰架构》读书笔记
第一章 服务架构演进史
架构演进
- 原始分布式时代。当时计算机硬件局促的运算处理能力,已直接妨碍到了在单台计算机上信息系统软件能够达到的最大规模。为突破硬件算力的限制,各个高校、研究机构、软硬件厂商开始分头探索,寻找使用多台计算机共同协作来支撑同一套软件系统运行的可行方案。这一阶段是对分布式架构最原始的探索。
调用远程方法遇到的问题,比如,远程的服务在哪里(服务发现),有多少个(负载均衡),网络出现分区、超时或者服务出错了怎么办(熔断、隔离、降级),方法的参数与返回结果如何表示(序列化协议),信息如何传输(传输协议),服务权限如何管理(认证、授权),如何保证通信安全(网络安全层)、如何令调用不同机器的服务返回相同的结果(分布式数据一致性)。 - 单体系统时代。系统各个模块都是在同一进程内调用。由于所有代码都共享同一进程,不能隔离,也就无法做到单独停止,更新,升级某一部分代码。从可维护性来说,单体系统是不占优势的。
- SOA时代。也就是面向务架构(Service Oriented Architecture) , 对大型系统行拆分,让每个子系统都能独立部署运行更新。SOA流程过于复杂,无法广泛推广。
- 微服务时代。微服务是一种通过多个小型服务组合来构建个应用的架构风格。这些服务围绕业务能力非特定技术标准来构建。各个服务可以采用不同的编程语言、不同数据存储技术,运行在不同进程之中。服务采取轻量级通信机制自动化部署机制实现通信和运维。
- 微服务架构需要考虑的问题:服务发现、跟踪治理、负载均衡、故障隔离、认证授权、伸缩扩展等。
- 微服务的业务与技术特征:1.围绕业务能力构建;2.分散治理; 3. 通过服务来实现独立自治的组件;4.产品化思维; 5.数据去中心化; 6.强终端弱管道;7.容错性设计;8演进式设计;9基础设施自动化;
- 后微服务时代。容器化 docker,虚拟化技术 Kubernetes,服务风格 Service Mesh, 云原生.
- 无服务时代。Serverless。让开发者只关注业务,不需要考虑技术组件,数据库、MQ、日志、存储等设施都运行在云上。
微服务概念:
- 现代微服务的概念:“微服务是一种通过多个小型服务组合来构建单个应用的架构风格,这些服务围绕业务能力而非特定的技术标准来构建。各个服务可以采用不同的编程语言,不同的数据存储技术,运行在不同的进程之中。服务采取轻量级的通信机制和自动化的部署机制实现通信与运维。”
微服务的九个核心的业务与技术特征:
-
围绕业务能力构建(Organized around Business Capability)。
这里再次强调了康威定律的重要性,有怎样结构、规模、能力的团队,就会产生出对应结构、规模、能力的产品。这个结论不是某个团队、某个公司遇到的巧合,而是必然的演化结果。如果本应该归属同一个产品内的功能被划分在不同团队中,必然会产生大量的跨团队沟通协作,跨越团队边界无论在管理、沟通、工作安排上都有更高昂的成本,高效的团队自然会针对其进行改进,当团队、产品磨合调节稳定之后,团队与产品就会拥有一致的结构。 -
分散治理(Decentralized Governance)。
这是要表达“谁家孩子谁来管”的意思,服务对应的开发团队有直接对服务运行质量负责的责任,也应该有着不受外界干预地掌控服务各个方面的权力,譬如选择与其他服务异构的技术来实现自己的服务。这一点在真正实践时多少存有宽松的处理余地,大多数公司都不会在某一个服务使用Java,另一个用Python,下一个用Golang,而是通常会有统一的主流语言,乃至统一的技术栈或专有的技术平台。微服务不提倡也并不反对这种“统一”,只要负责提供和维护基础技术栈的团队,有被各方依赖的觉悟,要有“经常被凌晨3点的闹钟吵醒”的心理准备就好。微服务更加强调的是确实有必要技术异构时,应能够有选择“不统一”的权利,譬如不应该强迫 Node.js去开发报表页面,要做人工智能训练模型时,应该可以选择 Python,等等。 -
通过服务来实现独立自治的组件(Componentization via Services)。
之所以强调通过“服务”(Service)而不是“类库”(Library)来构建组件,是因为类库在编译期静态链接到程序中,通过本地调用来提供功能,而服务是进程外组件,通过远程调用来提供功能。前面的文章里我们已经分析过,尽管远程服务有更高昂的调用成本,但这是为组件带来隔离与自治能力的必要代价。 -
产品化思维(Products not Projects)。
避免把软件研发视作要去完成某种功能,而是视作一种持续改进、提升的过程。譬如,不应该把运维只看作运维团队的事,把开发只看作开发团队的事,团队应该为软件产品的整个生命周期负责,开发者不仅应该知道软件如何开发,还应该知道它如何运作,用户如何反馈,乃至售后支持工作是怎样进行的。注意,这里服务的用户不一定是最终用户,也可能是消费这个服务的另外一个服务。以前在单体架构下,程序的规模决定了无法让全部人员都关注完整的产品,组织中会有开发、运维、支持等细致的分工的成员,各人只关注于自己的一块工作,但在微服务下,要求开发团队中每个人都具有产品化思维,关心整个产品的全部方面是具有可行性的。 -
数据去中心化(Decentralized Data Management)。
微服务明确地提倡数据应该按领域分散管理、更新、维护、存储,在单体服务中,一个系统的各个功能模块通常会使用同一个数据库,诚然中心化的存储天生就更容易避免一致性问题,但是,同一个数据实体在不同服务的视角里,它的抽象形态往往也是不同的。譬如,Bookstore应用中的书本,在销售领域中关注的是价格,在仓储领域中关注的库存数量,在商品展示领域中关注的是书籍的介绍信息,如果作为中心化的存储,所有领域都必须修改和映射到同一个实体之中,这便使得不同的服务很可能会互相产生影响而丧失掉独立性。尽管在分布式中要处理好一致性的问题也相当困难,很多时候都没法使用传统的事务处理来保证,但是两害相权取其轻,有一些必要的代价仍是值得付出的。 -
强终端弱管道(Smart Endpoint and Dumb Pipe)。
弱管道(Dumb Pipe)几乎算是直接指名道姓地反对 SOAP和ESB的那一堆复杂的通信机制。ESB可以处理消息的编码加工、业务规则转换等;BPM 可以集中编排企业业务服务;SOAP有几十个WS-*协议族在处理事务、一致性、认证授权等一系列工作,这些构筑在通信管道上的功能也许对某个系统中的某一部分服务是有必要的,但对于另外更多的服务则是强加进来的负担。如果服务需要上面的额外通信能力,就应该在服务自己的Endpoint 上解决,而不是在通信管道上一揽子处理。微服务提倡类似于经典UNIX过滤器那样简单直接的通信方式,RESTful 风格的通信在微服务中会是更加合适的选择。 -
容错性设计(Design for Failure)。不再虚幻地追求服务永远稳定,而是接受服务总会出错的现实,要求在微服务的设计中,有自动的机制对其依赖的服务能够进行快速故障检测,在持续出错的时候进行隔离,在服务恢复的时候重新联通。所以“断路器”这类设施,对实际生产环境的微服务来说并不是可选的外围组件,而是一个必须的支撑点,如果没有容错性的设计,系统很容易就会被因为一两个服务的崩溃所带来的雪崩效应淹没。可靠系统完全可能由会出错的服务组成,这是微服务最大的价值所在,也是这部开源文档标题“凤凰架构”的含义。
-
演进式设计(Evolutionary Design)。
容错性设计承认服务会出错,演进式设计则是承认服务会被报废淘汰。一个设计良好的服务,应该是能够报废的,而不是期望得到长存永生。假如系统中出现不可更改、无可替代的服务,这并不能说明这个服务是多么的优秀、多么的重要,反而是一种系统设计上脆弱的表现,微服务所追求的独立、自治,也是反对这种脆弱性的表现。 -
基础设施自动化(Infrastructure Automation)。
基础设施自动化,如 CI/CD 的长足发展,显著减少了构建、发布、运维工作的复杂性。由于微服务下运维的对象比起单体架构要有数量级的增长,使用微服务的团队更加依赖于基础设施的自动化,人工是很难支撑成百上千乃至成千上万级别的服务的。
第二章 访问远程服务
远程服务调用 (Remote Procedure Call ,RPC)。
-
进程间通信(Inter-Process Communication,IPC):解决两个进程之间如何交换数据。
-
RPC三个基本问题。
(1)如何表示数据。
对于远程方法调用,可能面临交互双方使用不同程序语言,即使语言相同,操作系统/指令集等也不一定相同。
有效的做法是将交互双方涉及的数据转换为事先约好的数据流格式来进行传输。也就是序列化与反序列化。
(2)如何传递数据。
如何通过网络,在两个服务之间交换数据。
这里“交换数据”通常指的是应用层协议,实际传输一般是基于标准的TCP、UDP等标准的传输层协议来完成的。两个服务交互不是只扔个序列化数据流来表示参数和结果就行的,许多在此之外信息,譬如异常、超时、安全、认证、授权、事务,等等,都可能产生双方需要交换信息的需求。
常见的有:java的RMI远程消息交换协议。
(3)如何表示方法。
需要一套与语言无关的接口描述语言(Interface Description Language,IDL)。 -
RPC框架: RMI(Sun/Oracle)、Thrift(Facebook/Apache)、Dubbo(阿里巴巴/Apache)、gRPC(Google)、Motan1/2(新浪)、Finagle(Twitter)、brpc(百度/Apache)、.NET Remoting(微软)、Arvo(Hadoop)、JSON-RPC 2.0(公开规范,JSON-RPC 工作组)
第三章:事务处理
事务的ACID特性:
一致性(Consistency):数据都是符合期望的,且相互关联的数据之间不会产生矛盾。
原子性(Atomic):在同一项业务处理过程中,事务保证了对多个数据的修改,要么同时成功,要么同时被撤销。
隔离性(Isolation):在不同的业务处理过程中,事务保证了各自业务正在读、写的数据互相独立,不会彼此影响。
持久性(Durability):事务应当保证所有成功被提交的数据修改都能够正确地被持久化,不丢失数据。
待补充。
本地事务
全局事务
共享事务
分布式事务
分布式的基石
第六章:分布式共识算法
第七章:从类库到服务
- 服务发现:对消费者来说,外部的服务由谁提供?具体在什么网络位置?
服务的网关路由:对生产者来说,内部哪些服务需要暴露?哪些应当隐藏?应当以何种形式暴露服务?以什么规则在集群中分配请求?
服务的负载均衡:对调用过程来说,如何保证每个远程服务都接收到相对平均的流量,获得尽可能高的服务质量与可靠性?
服务发现
- 远程服务调用都是使用全限定名(Fully Qualified Domain Name,FQDN)、端口号与服务标识所构成的三元组来确定一个远程服务的精确坐标的。
全限定名代表了网络中某台主机的精确位置,端口代表了主机上某一个提供了TCP/UDP网络服务的程序,
服务标识则代表了该程序所提供的某个具体的方法入口。
其中“全限定名、端口号”的含义对所有的远程服务来说都一致,而“服务标识”则与具体的应用层协议相关,不同协议具有不同形式的标识。
服务的可用与可靠
-
服务的注册(Service Registration):当服务启动的时候,它应该通过某些形式(如调用 API、产生事件消息、在 ZooKeeper/Etcd 的指定位置记录、存入数据库,等等)将自己的坐标信息通知到服务注册中心,这个过程可能由应用程序本身来完成,称为自注册模式,譬如 Spring Cloud 的@EnableEurekaClient 注解;
也可能有容器编排框架或第三方注册工具来完成,称为第三方注册模式,譬如 Kubernetes 和 Registrator。 -
服务的维护(Service Maintaining):尽管服务发现框架通常都有提供下线机制,但并没有什么办法保证每次服务都能优雅地下线
(Graceful Shutdown)而不是由于宕机、断网等原因突然失联。所以服务发现框架必须要自己去保证所维护的服务列表的正确性,以避免告知消费者服务的坐标后,得到的服务却不能使用的尴尬情况。现在的服务发现框架,往往都能支持多种协议(HTTP、TCP 等)、多种方式(长连接、心跳、探针、进程状态等)去监控服务是否健康存活,将不健康的服务自动从服务注册表中剔除。 -
服务的发现(Service Discovery):这里的发现是特指狭义上消费者从服务发现框架中,把一个符号(譬如 Eureka 中的 ServiceID、Nacos 中的服务名、或者通用的 FQDN)转换为服务实际坐标的过程,这个过程现在一般是通过 HTTP API 请求或者通过 DNS Lookup 操作来完成,也还有一些相对少用的方式,譬如 Kubernetes 也支持注入环境变量来做服务发现。
-
服务提供者在服务注册中心中注册、续约和下线自己的真实坐标,服务消费者根据某种符号从服务注册中心中获取到真实坐标。
Service Discovery:服务注册中心。
Service Consumer:服务消费者。
Service Provider:服务提供者。
Discover:发现。 Register:注册。 Renew:续约。Cancel:下线。RemoteCall:远程调用
注册中心一旦崩溃,整个系统都不再可用,因此,必须尽最大努力保证服务发现的可用性。实际用于生产的分布式系统,服务注册中心都是以集群的方式进行部署的,通常使用三个或者五个节点(通常最多七个,一般也不会更多了,否则日志复制的开销太高)来保证高可用。
Replicate:复制。
注册中心对比: Eureka与Consul
Eureka 的选择是优先保证高可用性,相对牺牲系统中服务状态的一致性。Eureka 的各个节点间采用异步复制来交换服务注册信息,当有新服务注册进来时,并不需要等待信息在其他节点复制完成,而是马上在该服务发现节点宣告服务可见,只是不保证在其他节点上多长时间后才会可见。同时,当有旧的服务发生变动,譬如下线或者断网,只会由超时机制来控制何时从哪一个服务注册表中移除,变动信息不会实时的同步给所有服务端与客户端。这样的设计使得不论是 Eureka 的服务端还是客户端,都能够持有自己的服务注册表缓存,并以 TTL(Time to Live)机制来进行更新,哪怕服务注册中心完全崩溃,客户端在仍然可以维持最低限度的可用。Eureka 的服务发现模型对节点关系相对固定,服务一般不会频繁上下线的系统是很合适的,以较小的同步代价换取了最高的可用性;Eureka 能够选择这种模型的底气在于万一客户端拿到了已经发生变动的错误地址,也能够通过 Ribbon 和 Hystrix 模块配合来兜底,实现故障转移(Failover)或者快速失败(Failfast)。
Consul 的选择是优先保证高可靠性,相对牺牲系统服务发现的可用性。Consul 采用Raft 算法,要求多数派节点写入成功后服务的注册或变动才算完成,严格地保证了在集群外部读取到的服务发现结果必定是一致的;同时采用 Gossip 协议,支持多数据中心之间更大规模的服务同步。Consul 优先保证高可靠性一定程度上是基于产品现实情况而做的技术决策,它不像 Netflix OSS 那样有着全家桶式的微服务组件,万一从服务发现中取到错误地址,就没有其他组件为它兜底了。
AP与CP
分布式的CAP理论。A是可用性,C是一致性,P是网络分区容错性。
P就是分区容错性:分布式系统在遇到任务网络分区故障的时候,各个网络分区仍然能够对外提供服务,除非整个网络环境都发生了故障。
假设系统形成了 A、B 两个网络分区后,A 区的服务只能从区域内的服务发现节点获取到 A 区的服务坐标,B 区的服务只能取到在 B 区的服务坐标,这对你的系统会有什么影响?
- 如果这件事情对你并没有太大的影响,甚至有可能还是有益的,就应该倾向于选择 AP 式的服务发现。譬如假设 A、B 就是不同的机房,是机房间的网络交换机导致服务发现集群出现的分区问题,但每个分区中的服务仍然能独立提供完整且正确的服务能力,此时尽管不是有意而为,但网络分区在事实上避免了跨机房的服务请求,反而还带来了服务调用链路优化的效果。
- 如果这件事情也可能对你影响非常之大,甚至可能带来比整个系统宕机更坏的结果,就应该倾向于选择 CP 式的服务发现。譬如系统中大量依赖了集中式缓存、消息总线、或者其他有状态的服务,一旦这些服务全部或者部分被分隔到某一个分区中,会对整个系统的操作的正确性产生直接影响的话,那与其最后弄出一堆数据错误,还不如直接停机来得痛快。
注册中心的实现
-
分布式 K/V 存储框架上开发的注册中心:ZooKeeper、Etcd。
Etcd 采用的是我们学习过的 Raft 算法,ZooKeeper 采用的是 ZAB 算法 -
专门用于服务发现的框架和工具: Eureka、Consul 和 Nacos。
支持 CP 的 Consul,支持 AP 的 Eureka,还有同时支持 CP 和 AP 的 Nacos。
(Nacos 采用类 Raft 协议做的 CP,采用自研的 Distro 协议做的 AP,这里“同时”是“都支持”的意思,它们必须二取其一,不是说 CAP 全能满足)。 -
以基础设施(主要是指 DNS 服务器)来实现服务发现,这类的代表是 SkyDNS、CoreDNS。
在 Kubernetes 1.3 之前的版本使用 SkyDNS 作为默认的 DNS 服务,其工作原理是从 API Server 中监听集群服务的变化,然后根据服务生成 NS、SRV 等 DNS 记录存放到 Etcd 中,kubelet 会为每个 Pod 设置 DNS 服务的地址为 SkyDNS 的地址,需要调用服务时,只需查询 DNS 把域名转换成 IP 列表便可实现分布式的服务发现。
第八章:流量治理
服务容错
常见的容错策略有以下几种:
-
故障转移(Failover):高可用的服务集群中,多数的服务——尤其是那些经常被其他服务所依赖的关键路径上的服务,均会部署有多个副本。这些副本可能部署在不同的节点(避免节点宕机)、不同的网络交换机(避免网络分区)甚至是不同的可用区(避免整个地区发生灾害或电力、骨干网故障)中。故障转移是指如果调用的服务器出现故障,系统不会立即向调用者返回失败结果,而是自动切换到其他服务副本,尝试其他副本能否返回成功调用的结果,从而保证了整体的高可用性。
故障转移的容错策略应该有一定的调用次数限制,譬如允许最多重试三个服务,如果都发生报错,那还是会返回调用失败。原因不仅是因为重试是有执行成本的,更是因为过度的重试反而可能让系统处于更加不利的状况。譬如有以下调用链:
Service A → Service B → Service C
假设 A 的超时阈值为 100 毫秒,而 B 调用 C 花费 60 毫秒,然后不幸失败了,这时候做故障转移其实已经没有太大意义了,因为即时下一次调用能够返回正确结果,也很可能同样需要耗费 60 毫秒时间,时间总和就已经触及 A 服务的超时阈值,所以在这种情况下故障转移反而对系统是不利的。 -
快速失败(Failfast):还有另外一些业务场景是不允许做故障转移的,故障转移策略能够实施的前提是要求服务具备幂等性,对于非幂等的服务,重复调用就可能产生脏数据,引起的麻烦远大于单纯的某次服务调用失败,此时就应该以快速失败作为首选的容错策略。譬如,在支付场景中,需要调用银行的扣款接口,如果该接口返回的结果是网络异常,程序是很难判断到底是扣款指令发送给银行时出现的网络异常,还是银行扣款后返回结果给服务时出现的网络异常的。为了避免重复扣款,此时最恰当可行的方案就是尽快让服务报错,坚决避免重试,尽快抛出异常,由调用者自行处理。
-
安全失败(Failsafe):在一个调用链路中的服务通常也有主路和旁路之分,并不见得其中每个服务都是不可或缺的,有部分服务失败了也不影响核心业务的正确性。譬如开发基于 Spring 管理的应用程序时,通过扩展点、事件或者 AOP 注入的逻辑往往就属于旁路逻辑,典型的有审计、日志、调试信息,等等。属于旁路逻辑的另一个显著特征是后续处理不会依赖其返回值,或者它的返回值是什么都不会影响后续处理的结果,譬如只是将返回值记录到数据库,并不使用它参与最终结果的运算。对这类逻辑,一种理想的容错策略是即使旁路逻辑调用实际失败了,也当作正确来返回,如果需要返回值的话,系统就自动返回一个符合要求的数据类型的对应零值,然后自动记录一条服务调用出错的日志备查即可,这种策略被称为安全失败。
-
沉默失败(Failsilent):如果大量的请求需要等到超时(或者长时间处理后)才宣告失败,很容易由于某个远程服务的请求堆积而消耗大量的线程、内存、网络等资源,进而影响到整个系统的稳定。面对这种情况,一种合理的失败策略是当请求失败后,就默认服务提供者一定时间内无法再对外提供服务,不再向它分配请求流量,将错误隔离开来,避免对系统其他部分产生影响,此即为沉默失败策略。
-
故障恢复(Failback):故障恢复一般不单独存在,而是作为其他容错策略的补充措施,一般在微服务管理框架中,如果设置容错策略为故障恢复的话,通常默认会采用快速失败加上故障恢复的策略组合。它是指当服务调用出错了以后,将该次调用失败的信息存入一个消息队列中,然后由系统自动开始异步重试调用。
故障恢复策略一方面是尽力促使失败的调用最终能够被正常执行,另一方面也可以为服务注册中心和负载均衡器及时提供服务恢复的通知信息。故障恢复显然也是要求服务必须具备幂等性的,由于它的重试是后台异步进行,即使最后调用成功了,原来的请求也早已经响应完毕,所以故障恢复策略一般用于对实时性要求不高的主路逻辑,同时也适合处理那些不需要返回值的旁路逻辑。为了避免在内存中异步调用任务堆积,故障恢复与故障转移一样,应该有最大重试次数的限制。 -
并行调用(Forking):上面五种以“Fail”开头的策略是针对调用失败时如何进行弥补的,以下这两种策略则是在调用之前就开始考虑如何获得最大的成功概率。并行调用策略很符合人们日常对一些重要环节进行的“双重保险”或者“多重保险”的处理思路,它是指一开始就同时向多个服务副本发起调用,只要有其中任何一个返回成功,那调用便宣告成功,这是一种在关键场景中使用更高的执行成本换取执行时间和成功概率的策略。
-
广播调用(Broadcast):广播调用与并行调用是相对应的,都是同时发起多个调用,但并行调用是任何一个调用结果返回成功便宣告成功,广播调用则是要求所有的请求全部都成功,这次调用才算是成功,任何一个服务提供者出现异常都算调用失败,广播调用通常会被用于实现“刷新分布式缓存”这类的操作。
容错策略 | 优点 | 缺点 | 应用场景 |
---|---|---|---|
故障转移 | 系统自动处理,调用者对失败的信息不可见 | 增加调用时间,额外的资源开销 | 调用幂等服务对调用时间不敏感的场景 |
快速失败 | 调用者有对失败的处理完全控制权 不依赖服务的幂等性 | 调用者必须正确处理失败逻辑,如果一味只是对外抛异常,容易引起雪崩 | 调用非幂等的服务 超时阈值较低的场景 |
安全失败 | 不影响主路逻辑 | 只适用于旁路调用 | 调用链中的旁路服务 |
沉默失败 | 控制错误不影响全局 | 出错的地方将在一段时间内不可用 | 频繁超时的服务 |
故障恢复 | 调用失败后自动重试,也不影响主路逻辑 | 重试任务可能产生堆积,重试仍然可能失败 | 调用链中的旁路服务对实时性要求不高的主路逻辑也可以使用 |
并行调用 | 尽可能在最短时间内获得最高的成功率 | 额外消耗机器资源,大部分调用可能都是无用功 | 资源充足且对失败容忍度低的场景 |
广播调用 | 支持同时对批量的服务提供者发起调用 | 资源消耗大,失败概率高 | 只适用于批量操作的场景 |
服务容错设计模式
服务容错设计模式,譬如微服务中常见的断路器模式、舱壁隔离模式,重试模式
流量控制
流量统计指标
- 每秒事务数(Transactions per Second,TPS):TPS 是衡量信息系统吞吐量的最终标准。“事务”可以理解为一个逻辑上具备原子性的业务操作。譬如你在 Fenix's Bookstore 买了一本书,将要进行支付,“支付”就是一笔业务操作,支付无论成功还是不成功,这个操作在逻辑上是原子的,即逻辑上不可能让你买本书还成功支付了前面 200 页,又失败了后面 300 页。
- 每秒请求数(Hits per Second,HPS):HPS 是指每秒从客户端发向服务端的请求数(请将 Hits 理解为 Requests 而不是 Clicks,国内某些翻译把它理解为“每秒点击数”多少有点望文生义的嫌疑)。如果只要一个请求就能完成一笔业务,那 HPS 与 TPS 是等价的,但在一些场景(尤其常见于网页中)里,一笔业务可能需要多次请求才能完成。譬如你在 Fenix's Bookstore 买了一本书要进行支付,尽管逻辑上它是原子的,但技术实现上,除非你是直接在银行开的商城中购物能够直接扣款,否则这个操作就很难在一次请求里完成,总要经过显示支付二维码、扫码付款、校验支付是否成功等过程,中间不可避免地会发生多次请求。
- 每秒查询数(Queries per Second,QPS):QPS 是指一台服务器能够响应的查询次数。如果只有一台服务器来应答请求,那 QPS 和 HPS 是等价的,但在分布式系统中,一个请求的响应往往要由后台多个服务节点共同协作来完成。譬如你在 Fenix's Bookstore 买了一本书要进行支付,尽管扫描支付二维码时客户端只发送了一个请求,但这背后服务端很可能需要向仓储服务确认库存信息避免超卖、向支付服务发送指令划转货款、向用户服务修改用户的购物积分,等等,这里面每次内部访问都要消耗掉一次或多次查询数。
限流设计模式
限流设计模式,常见的有: 流量计数器、滑动时间窗、漏桶和令牌桶四种限流设计模式
http://icyfenix.cn/distribution/traffic-management/traffic-control.html
分布式限流
分布式限流的一种方法是将所有服务的统计结果都存入集中式缓存(如 Redis)中,以实现在集群内的共享,并通过分布式锁、信号量等机制,解决这些数据的读写访问时并发控制的问题。
待补充。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· DeepSeek 开源周回顾「GitHub 热点速览」
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
2021-03-28 Dubbo上传文件之RestEasy
2018-03-28 SpringBoot中Mybatis打印sql
2018-03-28 classpath 和 classpath* 的区别:
2018-03-28 Spring的Cache注解