图像梯度计算
图像梯度-Sobel算子
从右到左,从下到上
img=cv2.imread('pie.png',cv2.IMREAD_GRAYSCALE) cv2.imshow('img',img) cv2.waitKey(0) cv2.destroyAllWindows()
dst = cv2.Sobel(src, ddepth, dx, dy, ksize)
- ddepth:图像的深度
- dx和dy分别表示水平和竖直方向
- ksize是Sobel算子的大小
白到黑是正数,黑到白就是负数了,所有的负数会被截断成0,所以要取绝对值
sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3) sobelx = cv2.convertScaleAbs(sobelx) cv_show(sobelx,'sobelx')
sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3) sobely = cv2.convertScaleAbs(sobely) cv_show(sobely,'sobely')
分别计算x和y,再求和
sobelxy = cv2.addWeighted(sobelx,0.5,sobely,0.5,0) cv_show(sobelxy,'sobelxy')
不建议直接计算
img=cv2.imread('lena.jpg',cv2.IMREAD_GRAYSCALE) cv_show(img,'img')
img = cv2.imread('lena.jpg',cv2.IMREAD_GRAYSCALE) sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3) sobelx = cv2.convertScaleAbs(sobelx) sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3) sobely = cv2.convertScaleAbs(sobely) sobelxy = cv2.addWeighted(sobelx,0.5,sobely,0.5,0) cv_show(sobelxy,'sobelxy')
直接计算效果不好
img = cv2.imread('lena.jpg',cv2.IMREAD_GRAYSCALE) sobelxy=cv2.Sobel(img,cv2.CV_64F,1,1,ksize=3)
sobelxy = cv2.convertScaleAbs(sobelxy)
cv_show(sobelxy,'sobelxy')
图像梯度-Scharr算子
图像梯度-laplacian算子
二阶梯度,即为一阶导
#不同算子的差异 img = cv2.imread('lena.jpg',cv2.IMREAD_GRAYSCALE) sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3) sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3) sobelx = cv2.convertScaleAbs(sobelx) sobely = cv2.convertScaleAbs(sobely) sobelxy = cv2.addWeighted(sobelx,0.5,sobely,0.5,0) scharrx = cv2.Scharr(img,cv2.CV_64F,1,0) scharry = cv2.Scharr(img,cv2.CV_64F,0,1) scharrx = cv2.convertScaleAbs(scharrx) scharry = cv2.convertScaleAbs(scharry) scharrxy = cv2.addWeighted(scharrx,0.5,scharry,0.5,0) laplacian = cv2.Laplacian(img,cv2.CV_64F) laplacian = cv2.convertScaleAbs(laplacian) res = np.hstack((sobelxy,scharrxy,laplacian)) cv_show(res,'res')