第二章 2.5 保存和加载文件中Pytorch模型
训练并保存模型参数到文件
# https://github.com/PacktPublishing/Modern-Computer-Vision-with-PyTorch # https://github.com/PacktPublishing/Modern-Computer-Vision-with-PyTorch ################### Chapter Two ####################################### import torch import torch.nn as nn ######################################################################## x = [[1,2],[3,4],[5,6],[7,8]] y = [[3],[7],[11],[15]] X = torch.tensor(x).float() Y = torch.tensor(y).float() ######################################################################## device = 'cuda' if torch.cuda.is_available() else 'cpu' X = X.to(device) Y = Y.to(device) print(device) ######################################################################## # 使用定义类方法构建神经网络 # class MyNeuralNet(nn.Module): # def __init__(self): # super().__init__() # self.input_to_hidden_layer = nn.Linear(2,8) # self.hidden_layer_activation = nn.ReLU() # self.hidden_to_output_layer = nn.Linear(8,1) # def forward(self, x): # x = self.input_to_hidden_layer(x) # x = self.hidden_layer_activation(x) # x = self.hidden_to_output_layer(x) # return x # mynet = MyNeuralNet().to(device) ######################################################################## # 使用序贯方法构建神经网络 mynet = nn.Sequential( nn.Linear(2, 8), nn.ReLU(), nn.Linear(8, 1) ).to(device) # 输出神经网络模型摘要 from torchsummary import summary summary(mynet, torch.zeros(1, 2)) ######################################################################## loss_func = nn.MSELoss() _Y = mynet(X) loss_value = loss_func(_Y,Y) print("损失值",loss_value) def my_loss_fun(_y,y): loss=(_y-y)**2 loss =loss.mean() return loss loss_func = my_loss_fun ######################################################################## from torch.optim import SGD opt = SGD(mynet.parameters(), lr = 0.001) ######################################################################## loss_history = [] for _ in range(100): opt.zero_grad() loss_value = loss_func(mynet(X),Y) loss_value.backward() opt.step() loss_history.append(loss_value.item()) ######################################################################## import matplotlib.pyplot as plt #matplotlib inline plt.plot(loss_history) plt.title('Loss variation over increasing epochs') plt.xlabel('epochs') plt.ylabel('loss value') plt.show() ######################################################################## _Y = mynet(X) loss_value = loss_func(_Y,Y) print("损失值",loss_value) val_x = [[7,8]] val_x = torch.tensor(val_x).float().to(device) print("输入输出测试",mynet(val_x)) # 保存模型 save_path = 'mynet.pth' torch.save(mynet.state_dict(), save_path) # # 读取模型 # # load_path = save_path # mynet.load_state_dict(torch.load(load_path, weights_only=True)) # # 测试 # val = [[8,9],[10,11],[1.5,2.5]] # val = torch.tensor(val).float() # # print("测试",mynet(val.to(device)))
装载文件里的模型参数
import torch import torch.nn as nn device = 'cuda' if torch.cuda.is_available() else 'cpu' # 使用序贯方法构建神经网络 mynet = nn.Sequential( nn.Linear(2, 8), nn.ReLU(), nn.Linear(8, 1) ).to(device) save_path = 'mynet.pth' # 读取模型 load_path = save_path mynet.load_state_dict(torch.load(load_path, weights_only=True)) # 测试 val = [[8,9],[10,11],[1.5,2.5]] val = torch.tensor(val).float() print("测试",mynet(val.to(device)))