1.应用场景-公交站问题
看一个应用场景和问题:
- 某城市新增 7 个站点(A, B, C, D, E, F, G) ,现在需要修路把 7 个站点连通
- 各个站点的距离用边线表示(权) ,比如 A – B 距离 12 公里
- 问:如何修路保证各个站点都能连通,并且总的修建公路总里程最短?
2. 克鲁斯卡尔算法介绍
- 克鲁斯卡尔(Kruskal)算法,是用来求加权连通图的最小生成树的算法。
- 基本思想:按照权值从小到大的顺序选择 n-1 条边,并保证这 n-1 条边不构成回路
- 具体做法:首先构造一个只含 n 个顶点的森林,然后依权值从小到大从连通网中选择边加入到森林中,并使森林中不产生回路,直至森林变成一棵树为止
3.克鲁斯卡尔算法图解说明
以城市公交站问题来图解说明 克鲁斯卡尔算法的原理和步骤:
在含有 n 个顶点的连通图中选择 n-1 条边,构成一棵极小连通子图,并使该连通子图中 n-1 条边上权值之和达到最小,则称其为连通网的最小生成树。
例如,对于如上图 G4 所示的连通网可以有多棵权值总和不相同的生成树。
克 鲁 斯 卡 尔 算 法 图 解
以上图 G4 为例,来对克鲁斯卡尔进行演示(假设,用数组 R 保存最小生成树结果)。
第 1 步:将边<E,F>加入 R 中。
边<E,F>的权值最小,因此将它加入到最小生成树结果 R 中。
第 2 步:将边<C,D>加入 R 中。
上一步操作之后,边<C,D>的权值最小,因此将它加入到最小生成树结果 R 中。
第 3 步:将边<D,E>加入 R 中。
上一步操作之后,边<D,E>的权值最小,因此将它加入到最小生成树结果 R 中。
第 4 步:将边<B,F>加入 R 中。
上一步操作之后,边<C,E>的权值最小,但<C,E>会和已有的边构成回路;因此,跳过边<C,E>。同理,跳过边<C,F>。将边<B,F>加入到最小生成树结果 R 中。
第 5 步:将边<E,G>加入 R 中。
上一步操作之后,边<E,G>的权值最小,因此将它加入到最小生成树结果 R 中。
第 6 步:将边<A,B>加入 R 中。
上一步操作之后,边<F,G>的权值最小,但<F,G>会和已有的边构成回路;因此,跳过边<F,G>。同理,跳过边<B,C>。将边<A,B>加入到最小生成树结果 R 中。
此时,最小生成树构造完成!它包括的边依次是:<E,F> <C,D> <D,E> <B,F> <E,G> <A,B>。
克 鲁 斯 卡 尔 算 法 分 析
根据前面介绍的克鲁斯卡尔算法的基本思想和做法,我们能够了解到,克鲁斯卡尔算法重点需要解决的以下两个问题:
问题一 对图的所有边按照权值大小进行排序。
问题二 将边添加到最小生成树中时,怎么样判断是否形成了回路。
问题一很好解决,采用排序算法进行排序即可。
问题二,处理方式是:记录顶点在"最小生成树"中的终点,顶点的终点是"在最小生成树中与它连通的最大顶点"。然后每次需要将一条边添加到最小生存树时,判断该边的两个顶点的终点是否重合,重合的话则会构成回路。
如 何 判 断 是 否 构 成 回 路 - - 举 例 说 明 ( ( 如 图 ) )
在将<E,F> <C,D> <D,E>加入到最小生成树 R 中之后,这几条边的顶点就都有了终点:
(01) C 的终点是 F。
(02) D 的终点是 F。
(03) E 的终点是 F。
(04) F 的终点是 F。
关于终点的说明:
1) 就是将所有顶点按照从小到大的顺序排列好之后;某个顶点的终点就是"与它连通的最大顶点"。
2) 因此,接下来,虽然<C,E>是权值最小的边。但是 C 和 E 的终点都是 F,即它们的终点相同,因此,将<C,E>加入最小生成树的话,会形成回路。这就是判断回路的方式。也就是说, 我们加入的 边 的 两个顶点 不能 都指向同一个终点 ,否则将构成回路。【后面有代码说明】
4.克鲁斯卡尔最佳实践-公交站问题
看一个公交站问题:
- 有北京有新增 7 个站点(A, B, C, D, E, F, G) ,现在需要修路把 7 个站点连通
- 各个站点的距离用边线表示(权) ,比如 A – B 距离 12 公里
- 问:如何修路保证各个站点都能连通,并且总的修建公路总里程最短?
- 代码实现和注解
import java.util.Arrays;
/**
* 克鲁斯卡尔算法
*/
public class KruskalCase {
private int edgeNum; //边的个数
private char[] vertexs; //顶点数组
private int[][] matrix; //邻接矩阵
//使用 INF 表示两个顶点不能连通
private static final int INF = Integer.MAX_VALUE;
public static void main(String[] args) {
char[] vertexs = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
//克鲁斯卡尔算法的邻接矩阵
int matrix[][] = {
/*A*//*B*//*C*//*D*//*E*//*F*//*G*/
/*A*/ {0, 12, INF, INF, INF, 16, 14},
/*B*/ {12, 0, 10, INF, INF, 7, INF},
/*C*/ {INF, 10, 0, 3, 5, 6, INF},
/*D*/ {INF, INF, 3, 0, 4, INF, INF},
/*E*/ {INF, INF, 5, 4, 0, 2, 8},
/*F*/ {16, 7, 6, INF, 2, 0, 9},
/*G*/ {14, INF, INF, INF, 8, 9, 0}};
//大家可以在去测试其它的邻接矩阵,结果都可以得到最小生成树.
//创建 KruskalCase 对象实例
KruskalCase kruskalCase = new KruskalCase(vertexs, matrix);
//输出构建的
kruskalCase.print(matrix);
kruskalCase.kruskal();
}
//构造器
public KruskalCase(char[] vertexs, int[][] matrix) {
//初始化顶点数和边的个数
int vlen = vertexs.length;
//初始化顶点, 复制拷贝的方式
this.vertexs = new char[vlen];
for (int i = 0; i < vertexs.length; i++) {
this.vertexs[i] = vertexs[i];
}
//初始化边, 使用的是复制拷贝的方式
this.matrix = new int[vlen][vlen];
for (int i = 0; i < vlen; i++) {
for (int j = 0; j < vlen; j++) {
this.matrix[i][j] = matrix[i][j];
}
}
//统计边的条数
for (int i = 0; i < vlen; i++) {
for (int j = i + 1; j < vlen; j++) {
if (this.matrix[i][j] != INF) {
edgeNum++;
}
}
}
}
public void kruskal() {
int index = 0; //表示最后结果数组的索引
int[] ends = new int[edgeNum]; //用于保存"已有最小生成树" 中的每个顶点在最小生成树中的终点
//创建结果数组, 保存最后的最小生成树
EData[] rets = new EData[edgeNum];
//获取图中 所有的边的集合 , 一共有 12 边
EData[] edges = getEdges();
System.out.println("图的边的集合=" + Arrays.toString(edges) + " 共" + edges.length); //12
//按照边的权值大小进行排序(从小到大)
sortEdges(edges);
//遍历 edges 数组,将边添加到最小生成树中时,判断是准备加入的边否形成了回路,如果没有,就加入 rets,否则不能加入
for (int i = 0; i < edges.length; i++) {
//获取到第 i 条边的第一个顶点(起点)
int p1 = getPosition(edges[i].start);
//获取到第 i 条边的第 2 个顶点
int p2 = getPosition(edges[i].end);
//获取 p1 这个顶点在已有最小生成树中的终点
int m = getEnd(ends, p1); //m = 4
//获取 p2 这个顶点在已有最小生成树中的终点
int n = getEnd(ends, p2); // n = 5
//是否构成回路
if (m != n) { //没有构成回路
ends[m] = n; // 设置 m 在"已有最小生成树"中的终点 <E,F> [0,0,0,0,5,0,0,0,0,0,0,0]
rets[index++] = edges[i]; //有一条边加入到 rets 数组
}
}
//<E,F> <C,D> <D,E> <B,F> <E,G> <A,B>。
//统计并打印 "最小生成树", 输出 rets
System.out.println("最小生成树为");
for (int i = 0; i < index; i++) {
System.out.println(rets[i]);
}
}
public static void print(int[][] matrix) {
for (int i = 0; i < matrix.length; i++) {
for (int j = 0; j < matrix[i].length; j++) {
System.out.printf("%12d", matrix[i][j]);
}
System.out.println();
}
}
/**
* 功能: 获取下标为 i 的顶点的终点(), 用于后面判断两个顶点的终点是否相同
*
* @param ends : 数组就是记录了各个顶点对应的终点是哪个,ends 数组是在遍历过程中,逐步形成
* @param i : 表示传入的顶点对应的下标
* @return 返回的就是 下标为 i 的这个顶点对应的终点的下标, 一会回头还有来理解
*/
private int getEnd(int[] ends, int i) { // i = 4 [0,0,0,0,5,0,0,0,0,0,0,0]
while (ends[i] != 0) {
i = ends[i];
}
return i;
}
/**
* 功能:对边进行排序处理, 冒泡排序
*
* @param edges 边的集合
*/
private void sortEdges(EData[] edges) {
for (int i = 0; i < edges.length - 1; i++) {
for (int j = 0; j < edges.length - 1 - i; j++) {
if (edges[j].weight > edges[j + 1].weight) {//交换
EData tmp = edges[j];
edges[j] = edges[j + 1];
edges[j + 1] = tmp;
}
}
}
}
/**
* @param ch 顶点的值,比如'A','B'
* @return 返回 ch 顶点对应的下标,如果找不到,返回-1
*/
private int getPosition(char ch) {
for (int i = 0; i < vertexs.length; i++) {
if (vertexs[i] == ch) {
//找到
return i;
}
}
//找不到,返回-1
return -1;
}
/**
* 功能: 获取图中边,放到 EData[] 数组中,后面我们需要遍历该数组
* 是通过 matrix 邻接矩阵来获取
* EData[] 形式 [['A','B', 12], ['B','F',7], .....]
*
* @return
*/
private EData[] getEdges() {
int index = 0;
EData[] edges = new EData[edgeNum];
for (int i = 0; i < vertexs.length; i++) {
for (int j = i + 1; j < vertexs.length; j++) {
if (matrix[i][j] != INF) {
edges[index] = new EData(vertexs[i], vertexs[j], matrix[i][j]);
index++;
}
}
}
return edges;
}
static class EData {
char start; //边的一个点
char end; //边的另外一个点
int weight; //边的权值
//构造器
public EData(char start, char end, int weight) {
this.start = start;
this.end = end;
this.weight = weight;
}
//重写 toString, 便于输出边信息
@Override
public String toString() {
return "EData [<" + start + ", " + end + ">= " + weight + "]";
}
}
}
- 运行结果
0 12 2147483647 2147483647 2147483647 16 14
12 0 10 2147483647 2147483647 7 2147483647
2147483647 10 0 3 5 6 2147483647
2147483647 2147483647 3 0 4 2147483647 2147483647
2147483647 2147483647 5 4 0 2 8
16 7 6 2147483647 2 0 9
14 2147483647 2147483647 2147483647 8 9 0
图的边的集合=[EData [<A, B>= 12], EData [<A, F>= 16], EData [<A, G>= 14], EData [<B, C>= 10], EData [<B, F>= 7], EData [<C, D>= 3], EData [<C, E>= 5], EData [<C, F>= 6], EData [<D, E>= 4], EData [<E, F>= 2], EData [<E, G>= 8], EData [<F, G>= 9]] 共12
最小生成树为
EData [<E, F>= 2]
EData [<C, D>= 3]
EData [<D, E>= 4]
EData [<B, F>= 7]
EData [<E, G>= 8]
EData [<A, B>= 12]