1.需求说明

本章节使用Sharding-JDBC完成对订单表的水平分表,通过快速入门程序的开发,快速体验Sharding-JDBC的使用方法。
人工创建两张表,t_order_1和t_order_2,这两张表是订单表拆分后的表,通过Sharding-Jdbc向订单表插入数据,按照一定的分片规则,主键为偶数的进入t_order_1,另一部分数据进入t_order_2,通过Sharding-Jdbc 查询数据,根据 SQL语句的内容从t_order_1或t_order_2查询数据。

2.环境搭建

2.1 环境说明

  • 操作系统: Win10
  • 数据库: MySQL-5.7.25
  • JDK :64位 jdk1.8.0_201
  • 应用框架: spring-boot-2.1.3.RELEASE,Mybatis3.5.0
  • Sharding-JDBC :sharding-jdbc-spring-boot-starter-4.0.0-RC1

2.2 创建数据库

创建订单库 order_db

CREATE DATABASE `order_db` CHARACTER SET 'utf8' COLLATE 'utf8_general_ci';

在order_db中创建t_order_1、t_order_2表


DROP TABLE IF EXISTS `t_order_1`;
CREATE TABLE `t_order_1` (
`order_id` bigint(20) NOT NULL COMMENT '订单id',
`price` decimal(10, 2) NOT NULL COMMENT '订单价格',
`user_id` bigint(20) NOT NULL COMMENT '下单用户id',
`status` varchar(50) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT '订单状态',
PRIMARY KEY (`order_id`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Dynamic;

DROP TABLE IF EXISTS `t_order_2`;
CREATE TABLE `t_order_2` (
`order_id` bigint(20) NOT NULL COMMENT '订单id',
`price` decimal(10, 2) NOT NULL COMMENT '订单价格',
`user_id` bigint(20) NOT NULL COMMENT '下单用户id',
`status` varchar(50) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT '订单状态',
PRIMARY KEY (`order_id`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Dynamic;

2.3.引入maven依赖

引入 sharding-jdbc和SpringBoot整合的Jar包:

<dependency>
  <groupId>org.apache.shardingsphere</groupId>
  <artifactId>sharding‐jdbc‐spring‐boot‐starter</artifactId>
  <version>4.0.0‐RC1</version>
</dependency>

具体spring boot相关依赖及配置请参考资料中dbsharding/sharding-jdbc-simple工程,本指引只说明与Sharding-JDBC相关的内容。

3.编写程序

3.1 分片规则配置

分片规则配置是sharding-jdbc进行对分库分表操作的重要依据,配置内容包括:数据源、主键生成策略、分片策略等。
在application.properties中配置

##水平分表
server.port=56081

spring.application.name = sharding-jdbc-simple-demo

server.servlet.context-path = /sharding-jdbc-simple-demo
spring.http.encoding.enabled = true
spring.http.encoding.charset = UTF-8
spring.http.encoding.force = true

spring.main.allow-bean-definition-overriding = true

mybatis.configuration.map-underscore-to-camel-case = true

swagger.enable = true

logging.level.root = info
logging.level.org.springframework.web = info
logging.level.com.itheima.dbsharding  = debug
logging.level.druid.sql = debug

#sharding-jdbc分片规则配置
#数据源
spring.shardingsphere.datasource.names = m1

spring.shardingsphere.datasource.m1.type = com.alibaba.druid.pool.DruidDataSource
spring.shardingsphere.datasource.m1.driver-class-name = com.mysql.jdbc.Driver
spring.shardingsphere.datasource.m1.url = jdbc:mysql://localhost:3306/order_db?useUnicode=true
spring.shardingsphere.datasource.m1.username = root
spring.shardingsphere.datasource.m1.password = root

# 指定t_order表的数据分布情况,配置数据节点 m1.t_order_1,m1.t_order_2
spring.shardingsphere.sharding.tables.t_order.actual-data-nodes = m1.t_order_$->{1..2}

# 指定t_order表的主键生成策略为SNOWFLAKE
spring.shardingsphere.sharding.tables.t_order.key-generator.column=order_id
spring.shardingsphere.sharding.tables.t_order.key-generator.type=SNOWFLAKE

# 指定t_order表的分片策略,分片策略包括分片键和分片算法
spring.shardingsphere.sharding.tables.t_order.table-strategy.inline.sharding-column = order_id
spring.shardingsphere.sharding.tables.t_order.table-strategy.inline.algorithm-expression = t_order_$->{order_id % 2 + 1}

# 打开sql输出日志
spring.shardingsphere.props.sql.show = true


    1. 首先定义数据源m1,并对m1进行实际的参数配置。
  • 2.指定t_order表的数据分布情况,他分布在m1.t_order_1,m1.t_order_2
  • 3.指定t_order表的主键生成策略为SNOWFLAKE,SNOWFLAKE是一种分布式自增算法,保证id全局唯一
  • 4.定义t_order分片策略,order_id为偶数的数据落在t_order_1,为奇数的落在t_order_2,分表策略的表达式为t_order_$->

3.2. 数据操作

import org.apache.ibatis.annotations.Insert;
import org.apache.ibatis.annotations.Mapper;
import org.apache.ibatis.annotations.Param;
import org.apache.ibatis.annotations.Select;
import org.springframework.stereotype.Component;

import java.math.BigDecimal;
import java.util.List;
import java.util.Map;

@Mapper
@Component
public interface OrderDao {

    /**
     * 插入订单
     *
     * @param price
     * @param userId
     * @param status
     * @return
     */
    @Insert("insert into t_order(price,user_id,status)values(#{price},#{userId},#{status})")
    int insertOrder(@Param("price") BigDecimal price, @Param("userId") Long userId, @Param("status") String status);


    /**
     * 根据id列表查询订单
     *
     * @param orderIds
     * @return
     */
    @Select("<script>" +
            "select" +
            " * " +
            " from t_order t " +
            " where t.order_id in " +
            " <foreach collection='orderIds' open='(' separator=',' close=')' item='id'>" +
            " #{id} " +
            " </foreach>" +
            "</script>")
    List<Map> selectOrderbyIds(@Param("orderIds") List<Long> orderIds);

}

3.3.测试

    @Test
    public void testInsertOrder() {
        for (int i = 1; i < 20; i++) {
            orderDao.insertOrder(new BigDecimal(i), 2L, "SUCCESS");
        }
    }

    @Test
    public void testSelectOrderbyIds() {
        List<Long> ids = new ArrayList<>();
        ids.add(598849042725732353L);
        ids.add(598532482043740164L);

        List<Map> maps = orderDao.selectOrderbyIds(ids);
        System.out.println(maps);
    }

执行 testInsertOrder:

通过日志可以发现order_id为奇数的被插入到t_order_2表,为偶数的被插入到t_order_1表,达到预期目标。
执行testSelectOrderbyIds:

通过日志可以发现,根据传入order_id的奇偶不同,sharding-jdbc分别去不同的表检索数据,达到预期目标。

4.流程分析

通过日志分析,Sharding-JDBC在拿到用户要执行的sql之后干了哪些事儿:
(1)解析sql,获取片键值,在本例中是order_id
(2)Sharding-JDBC通过规则配置 t_order_$->{order_id % 2 + 1},知道了当order_id为偶数时,应该往t_order_1表插数据,为奇数时,往t_order_2插数据。
(3)于是Sharding-JDBC根据order_id的值改写sql语句,改写后的SQL语句是真实所要执行的SQL语句。
(4)执行改写后的真实sql语句
(5)将所有真正执行sql的结果进行汇总合并,返回。

5. 其他集成方式

Sharding-JDBC不仅可以与spring boot良好集成,它还支持其他配置方式,共支持以下四种集成方式。

Spring Boot Yaml 配置
定义application.yml,内容如下:

server:
  port: 56081
  servlet:
    context‐path: /sharding‐jdbc‐simple‐demo
spring:
  application:
    name: sharding‐jdbc‐simple‐demo
  http:
    encoding:
      enabled: true
      charset: utf‐8
      force: true
  main:
    allow‐bean‐definition‐overriding: true
  shardingsphere:
    datasource:
      names: m1
      m1:
        type: com.alibaba.druid.pool.DruidDataSource
        driverClassName: com.mysql.jdbc.Driver
        url: jdbc:mysql://localhost:3306/order_db?useUnicode=true
        username: root
        password: mysql
    sharding:
      tables:
        t_order:
          actualDataNodes: m1.t_order_$‐>{1..2}
          tableStrategy:
            inline:
              shardingColumn: order_id
              algorithmExpression: t_order_$‐>{order_id % 2 + 1}
          keyGenerator:
            type: SNOWFLAKE
            column: order_id
    props:
      sql:
        show: true
mybatis:
  configuration:
    map‐underscore‐to‐camel‐case: true
swagger:
  enable: true
logging:
  level:
    root: info
    org.springframework.web: info
    com.itheima.dbsharding: debug
    druid.sql: debug

如果使用 application.yml则需要屏蔽原来的application.properties文件。

Java 配置
添加配置类:

@Configuration
public class ShardingJdbcConfig {
    // 定义数据源
    Map<String, DataSource> createDataSourceMap() {
        DruidDataSource dataSource1 = new DruidDataSource();
        dataSource1.setDriverClassName("com.mysql.jdbc.Driver");
        dataSource1.setUrl("jdbc:mysql://localhost:3306/order_db?useUnicode=true");
        dataSource1.setUsername("root");
        dataSource1.setPassword("root");
        Map<String, DataSource> result = new HashMap<>();
        result.put("m1", dataSource1);
        return result;
    }
    // 定义主键生成策略
    private static KeyGeneratorConfiguration getKeyGeneratorConfiguration() {
        KeyGeneratorConfiguration result = new
KeyGeneratorConfiguration("SNOWFLAKE","order_id");
        return result;
    }
    // 定义t_order表的分片策略
    TableRuleConfiguration getOrderTableRuleConfiguration() {
        TableRuleConfiguration result = new TableRuleConfiguration("t_order","m1.t_order_$‐>
{1..2}");
        result.setTableShardingStrategyConfig(new
InlineShardingStrategyConfiguration("order_id", "t_order_$‐>{order_id % 2 + 1}"));
        result.setKeyGeneratorConfig(getKeyGeneratorConfiguration());
        return result;
    }
    // 定义sharding‐Jdbc数据源
    @Bean
    DataSource getShardingDataSource() throws SQLException {
        ShardingRuleConfiguration shardingRuleConfig = new ShardingRuleConfiguration();
        shardingRuleConfig.getTableRuleConfigs().add(getOrderTableRuleConfiguration());
        //spring.shardingsphere.props.sql.show = true
        Properties properties = new Properties();
        properties.put("sql.show","true");
        return ShardingDataSourceFactory.createDataSource(createDataSourceMap(),shardingRuleConfig,properties);
    }
}

由于采用了配置类所以需要屏蔽原来 application.properties文件中spring.shardingsphere开头的配置信息。
还需要在SpringBoot启动类中屏蔽使用spring.shardingsphere配置项的类:

@SpringBootApplication(exclude = {SpringBootConfiguration.class})
public class ShardingJdbcSimpleDemoBootstrap {....}

Spring Boot properties配置
此方式同快速入门程序。

# 定义数据源
spring.shardingsphere.datasource.names = m1
spring.shardingsphere.datasource.m1.type = com.alibaba.druid.pool.DruidDataSource
spring.shardingsphere.datasource.m1.driver‐class‐name = com.mysql.jdbc.Driver
spring.shardingsphere.datasource.m1.url = jdbc:mysql://localhost:3306/order_db?useUnicode=true
spring.shardingsphere.datasource.m1.username = root
spring.shardingsphere.datasource.m1.password = root
# 指定t_order表的主键生成策略为SNOWFLAKE
spring.shardingsphere.sharding.tables.t_order.key‐generator.column=order_id
spring.shardingsphere.sharding.tables.t_order.key‐generator.type=SNOWFLAKE
# 指定t_order表的数据分布情况
spring.shardingsphere.sharding.tables.t_order.actual‐data‐nodes = m1.t_order_$‐>{1..2}
# 指定t_order表的分表策略
spring.shardingsphere.sharding.tables.t_order.table‐strategy.inline.sharding‐column = order_id
spring.shardingsphere.sharding.tables.t_order.table‐strategy.inline.algorithm‐expression =
t_order_$‐>{order_id % 2 + 1}

Spring命名空间配置
此方式使用xml方式配置,不推荐使用。

<?xml version="1.0" encoding="UTF‐8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
       xmlns:xsi="http://www.w3.org/2001/XMLSchema‐instance"
       xmlns:p="http://www.springframework.org/schema/p"
       xmlns:context="http://www.springframework.org/schema/context"
       xmlns:tx="http://www.springframework.org/schema/tx"
       xmlns:sharding="http://shardingsphere.apache.org/schema/shardingsphere/sharding"
       xsi:schemaLocation="http://www.springframework.org/schema/beans
                        http://www.springframework.org/schema/beans/spring‐beans.xsd
                        http://shardingsphere.apache.org/schema/shardingsphere/sharding
                        http://shardingsphere.apache.org/schema/shardingsphere/sharding/sharding.xsd
                        http://www.springframework.org/schema/context
                        http://www.springframework.org/schema/context/spring‐context.xsd
                        http://www.springframework.org/schema/tx
                        http://www.springframework.org/schema/tx/spring‐tx.xsd">
    <context:annotation‐config />
   
    <!‐‐定义多个数据源‐‐>
    <bean id="m1" class="com.alibaba.druid.pool.DruidDataSource" destroy‐method="close">
        <property name="driverClassName" value="com.mysql.jdbc.Driver" />
        <property name="url" value="jdbc:mysql://localhost:3306/order_db_1?useUnicode=true" />
        <property name="username" value="root" />
        <property name="password" value="root" />
    </bean>
 
   <!‐‐定义分库策略‐‐>
   <sharding:inline‐strategy id="tableShardingStrategy" sharding‐column="order_id" algorithm‐
expression="t_order_$‐>{order_id % 2 + 1}" />
 
   
   <!‐‐定义主键生成策略‐‐>
   <sharding:key‐generator id="orderKeyGenerator" type="SNOWFLAKE" column="order_id" />  
 
    <!‐‐定义sharding‐Jdbc数据源‐‐>
    <sharding:data‐source id="shardingDataSource">
        <sharding:sharding‐rule data‐source‐names="m1">
            <sharding:table‐rules>
                <sharding:table‐rule logic‐table="t_order"  table‐strategy‐
ref="tableShardingStrategy" key‐generator‐ref="orderKeyGenerator" />
            </sharding:table‐rules>
        </sharding:sharding‐rule>
    </sharding:data‐source>
</beans>
posted on 2021-05-12 18:56  whn051799  阅读(404)  评论(0编辑  收藏  举报