一、原理阐述
算法类型:非监督学习_聚类算法
输入: 连续型
V1.0
给定需要分为k个分类,随机选择k个点作为中心点,计算每个点离这k个中心点的距离,将距离最小的作为该点的分类;再利用均值等计算这k个分类的新中心点,重复上面的计算,直到每个点的分类不再变化或迭代次数大于一定阈值结束。
二、算法选择
算法 | 特点&区别 |
k-means |
三、算法过程
1.需要给定划分为几个分类,有一个统计量SSE可以辅助测算划为分几类比较合理。
2.初始点的选择会影响结果。
度量:点与点的距离
四、特点
五、代码API
Without summary,you can't master it.