JMH使用说明

一、

  性能往往是特定情景下的评价,泛泛地说性能“好”或者“快”,往是具有误导性的。通过引入基准测试,我们可以定义性能对比的明确条件、具体的指标,进而保证得到定量的、可重复的对比数据,这是工程中的实际需要。

  不同的基准测试其具体内容和范围也存在很大的不同。如果是专业的性能工程师,更加熟悉的可能是类似SPEC提供的工业标准的系统级测试;而对于大多数 Java 开发者,更熟悉的则是范围相对较小、关注点更加细节的微基准测试(Micro-Benchmark)。

 

  目前应用最为广泛的框架之一就是JMH,OpenJDK 自身也大量地使用 JMH 进行性能对比,如果你是做 Java API 级别的性能对比,JMH 往往是你的首选。

 

二、如果要在现有Maven项目中使用JMH,只需要把生成出来的两个依赖以及shade插件拷贝到项目的pom中即可:

        <dependency>
            <groupId>org.openjdk.jmh</groupId>
            <artifactId>jmh-core</artifactId>
            <!-- https://mvnrepository.com/artifact/org.openjdk.jmh/jmh-core -->
            <version>1.19</version>
        </dependency>
        <dependency>
            <groupId>org.openjdk.jmh</groupId>
            <artifactId>jmh-generator-annprocess</artifactId>
            <version>1.19</version>
            <scope>provided</scope>
        </dependency>


    <build>
        <plugins>

            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-shade-plugin</artifactId>
                <version>2.0</version>
                <executions>
                    <execution>
                        <phase>package</phase>
                        <goals>
                            <goal>shade</goal>
                        </goals>
                        <configuration>
                            <finalName>microbenchmarks</finalName>
                            <transformers>
                                <transformer
                                    implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
                                    <mainClass>org.openjdk.jmh.Main</mainClass>
                                </transformer>
                            </transformers>
                        </configuration>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>

 

TestJmh.java

package com.jmh;

import java.util.concurrent.TimeUnit;
import org.openjdk.jmh.annotations.Benchmark;
import org.openjdk.jmh.annotations.BenchmarkMode;
import org.openjdk.jmh.annotations.Mode;
import org.openjdk.jmh.annotations.OutputTimeUnit;
import org.openjdk.jmh.annotations.Scope;
import org.openjdk.jmh.annotations.State;
import org.openjdk.jmh.runner.Runner;
import org.openjdk.jmh.runner.RunnerException;
import org.openjdk.jmh.runner.options.Options;
import org.openjdk.jmh.runner.options.OptionsBuilder;

@BenchmarkMode(Mode.Throughput) // 测试方法平均执行时间
@OutputTimeUnit(TimeUnit.MICROSECONDS) // 输出结果的时间粒度为微秒
@State(Scope.Thread) // 每个测试线程一个实例
public class TestJmh {

    @Benchmark
        public String stringConcat() {
            String a = "a";
            String b = "b";
            String c = "c";
            String s = a + b + c;
            System.out.println(s);
            return s;
        }
        
        
        public static void main(String[] args) throws RunnerException {
            Options opt = new OptionsBuilder().include(TestJmh.class.getSimpleName()).forks(1).warmupIterations(5)
                    .measurementIterations(5).build();
            new Runner(opt).run();
        }
}

 

 

三、详细说明

3.1 基本概念

首先看看JMH的几个基本概念:

 

Mode 

Mode 表示 JMH 进行 Benchmark 时所使用的模式。通常是测量的维度不同,或是测量的方式不同。目前 JMH 共有四种模式:

 

Throughput: 整体吞吐量,例如“1秒内可以执行多少次调用”。

 

AverageTime: 调用的平均时间,例如“每次调用平均耗时xxx毫秒”。

 

SampleTime: 随机取样,最后输出取样结果的分布,例如“99%的调用在xxx毫秒以内,99.99%的调用在xxx毫秒以内”

 

SingleShotTime: 以上模式都是默认一次 iteration 是 1s,唯有 SingleShotTime 是只运行一次。往往同时把 warmup 次数设为0,用于测试冷启动时的性能。

 

Iteration 

Iteration 是 JMH 进行测试的最小单位。在大部分模式下,一次 iteration 代表的是一秒,JMH 会在这一秒内不断调用需要 benchmark 的方法,然后根据模式对其采样,计算吞吐量,计算平均执行时间等。

 

Warmup

 

Warmup 是指在实际进行 benchmark 前先进行预热的行为。为什么需要预热?因为 JVM 的 JIT 机制的存在,如果某个函数被调用多次之后,JVM 会尝试将其编译成为机器码从而提高执行速度。为了让 benchmark 的结果更加接近真实情况就需要进行预热。

 

3.2 注解与选项

3.2.1 常用注解说明

@BenchmarkMode 

对应Mode选项,可用于类或者方法上, 需要注意的是,这个注解的value是一个数组,可以把几种Mode集合在一起执行,还可以设置为Mode.All,即全部执行一遍。

 

@State 

类注解,JMH测试类必须使用@State注解,State定义了一个类实例的生命周期,可以类比Spring Bean的Scope。由于JMH允许多线程同时执行测试,不同的选项含义如下:

 

Scope.Thread:默认的State,每个测试线程分配一个实例;

 

Scope.Benchmark:所有测试线程共享一个实例,用于测试有状态实例在多线程共享下的性能;

 

Scope.Group:每个线程组共享一个实例;

 

@OutputTimeUnit 

benchmark 结果所使用的时间单位,可用于类或者方法注解,使用java.util.concurrent.TimeUnit中的标准时间单位。

 

@Benchmark 

方法注解,表示该方法是需要进行 benchmark 的对象。

 

@Setup 

方法注解,会在执行 benchmark 之前被执行,正如其名,主要用于初始化。

 

@TearDown 

方法注解,与@Setup 相对的,会在所有 benchmark 执行结束以后执行,主要用于资源的回收等。

 

@Param 

成员注解,可以用来指定某项参数的多种情况。特别适合用来测试一个函数在不同的参数输入的情况下的性能。@Param注解接收一个String数组,在@setup方法执行前转化为为对应的数据类型。多个@Param注解的成员之间是乘积关系,譬如有两个用@Param注解的字段,第一个有5个值,第二个字段有2个值,那么每个测试方法会跑5*2=10次。

 

原文:https://blog.csdn.net/lxbjkben/article/details/79410740 

JMH使用说明一、概述JMH,即Java Microbenchmark Harness,是专门用于代码微基准测试的工具套件。何谓Micro Benchmark呢?简单的来说就是基于方法层面的基准测试,精度可以达到微秒级。当你定位到热点方法,希望进一步优化方法性能的时候,就可以使用JMH对优化的结果进行量化的分析。和其他竞品相比——如果有的话,JMH最有特色的地方就是,它是由Oracle内部实现JIT的那拨人开发的,对于JIT以及JVM所谓的“profile guided optimization”对基准测试准确性的影响可谓心知肚明(smile)
JMH比较典型的应用场景有:
想准确的知道某个方法需要执行多长时间,以及执行时间和输入之间的相关性;对比接口不同实现在给定条件下的吞吐量;查看多少百分比的请求在多长时间内完成;二、第一个例子接下来,我们看看如何使用JMH。
要使用JMH,首先需要准备好Maven环境,JMH的源代码以及官方提供的Sample就是使用Maven进行项目管理的,github上也有使用gradle的例子可自行搜索参考。使用mvn命令行创建一个JMH工程:
mvn archetype:generate \          -DinteractiveMode=false \          -DarchetypeGroupId=org.openjdk.jmh \          -DarchetypeArtifactId=jmh-java-benchmark-archetype \          -DgroupId=co.speedar.infra \          -DartifactId=jmh-test \          -Dversion=1.01234567如果要在现有Maven项目中使用JMH,只需要把生成出来的两个依赖以及shade插件拷贝到项目的pom中即可:
    <dependency>        <groupId>org.openjdk.jmh</groupId>        <artifactId>jmh-core</artifactId>        <version>0.7.1</version>    </dependency>    <dependency>        <groupId>org.openjdk.jmh</groupId>        <artifactId>jmh-generator-annprocess</artifactId>        <version>0.7.1</version>        <scope>provided</scope>    </dependency>...    <plugin>        <groupId>org.apache.maven.plugins</groupId>        <artifactId>maven-shade-plugin</artifactId>        <version>2.0</version>        <executions>            <execution>                <phase>package</phase>                <goals>                    <goal>shade</goal>                </goals>                <configuration>                    <finalName>microbenchmarks</finalName>                    <transformers>                        <transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">                            <mainClass>org.openjdk.jmh.Main</mainClass>                        </transformer>                    </transformers>                </configuration>            </execution>        </executions>    </plugin>123456789101112131415161718192021222324252627282930313233然后,就可以着手写第一个JMH例子了:
package co.speedar.infra.test;import java.util.concurrent.TimeUnit;import org.openjdk.jmh.annotations.Benchmark;import org.openjdk.jmh.annotations.BenchmarkMode;import org.openjdk.jmh.annotations.Mode;import org.openjdk.jmh.annotations.OutputTimeUnit;import org.openjdk.jmh.annotations.Scope;import org.openjdk.jmh.annotations.State;import org.openjdk.jmh.runner.Runner;import org.openjdk.jmh.runner.RunnerException;import org.openjdk.jmh.runner.options.Options;import org.openjdk.jmh.runner.options.OptionsBuilder;import org.slf4j.Logger;import org.slf4j.LoggerFactory;@BenchmarkMode(Mode.AverageTime) // 测试方法平均执行时间@OutputTimeUnit(TimeUnit.MICROSECONDS) // 输出结果的时间粒度为微秒@State(Scope.Thread) // 每个测试线程一个实例public class FirstBenchMark {    private static Logger log = LoggerFactory.getLogger(FirstBenchMark.class);    @Benchmark    public String stringConcat() {        String a = "a";        String b = "b";        String c = "c";        String s = a + b + c;        log.debug(s);        return s;    }    public static void main(String[] args) throws RunnerException {        // 使用一个单独进程执行测试,执行5遍warmup,然后执行5遍测试        Options opt = new OptionsBuilder().include(FirstBenchMark.class.getSimpleName()).forks(1).warmupIterations(5)                .measurementIterations(5).build();        new Runner(opt).run();    }}1234567891011121314151617181920212223242526272829303132333435在上面的测试代码中,加了几个类注解以及一个方法注解,在main方法中指明了测试的一些选项,然后使用JMH提供的Runner执行测试。在注释中提供了大致的讲解,具体的选项说明后边再详述。接下来我们直接跑起来这个测试看看结果如何。执行测试,可能会遇到报错: Exception in thread "main" java.lang.RuntimeException: ERROR: Unable to find the resource: /META-INF/BenchmarkList 解决方法:
先执行mvn clean install然后再在ide中执行main方法;或者在eclipse中安装m2e-apt插件,然后启用Automatically configure JDT APT选项;  

然后,就可以愉快地看到测试结果如下:
# JMH 1.14.1 (released 525 days ago, please consider updating!)# VM version: JDK 1.8.0_91, VM 25.91-b14# VM invoker: /Library/Java/JavaVirtualMachines/jdk1.8.0_91.jdk/Contents/Home/jre/bin/java# VM options: -Dfile.encoding=UTF-8# Warmup: 5 iterations, 1 s each# Measurement: 5 iterations, 1 s each# Timeout: 10 min per iteration# Threads: 1 thread, will synchronize iterations# Benchmark mode: Average time, time/op# Benchmark: co.speedar.infra.test.FirstBenchMark.stringConcat# Run progress: 0.00% complete, ETA 00:00:10# Fork: 1 of 1# Warmup Iteration   1: 0.009 us/op# Warmup Iteration   2: 0.011 us/op# Warmup Iteration   3: 0.007 us/op# Warmup Iteration   4: 0.006 us/op# Warmup Iteration   5: 0.006 us/opIteration   1: 0.006 us/opIteration   2: 0.005 us/opIteration   3: 0.005 us/opIteration   4: 0.006 us/opIteration   5: 0.006 us/op
Result "stringConcat":  0.006 ±(99.9%) 0.001 us/op [Average]  (min, avg, max) = (0.005, 0.006, 0.006), stdev = 0.001  CI (99.9%): [0.005, 0.006] (assumes normal distribution)
# Run complete. Total time: 00:00:10Benchmark                    Mode  Cnt  Score    Error  UnitsFirstBenchMark.stringConcat  avgt    5  0.006 ±  0.001  us/op12345678910111213141516171819202122232425262728293031测试结果表明,被测试方法平均耗时为0.006微秒,误差为±0.001微秒。
三、详细说明3.1 基本概念首先看看JMH的几个基本概念:
Mode Mode 表示 JMH 进行 Benchmark 时所使用的模式。通常是测量的维度不同,或是测量的方式不同。目前 JMH 共有四种模式:
Throughput: 整体吞吐量,例如“1秒内可以执行多少次调用”。
AverageTime: 调用的平均时间,例如“每次调用平均耗时xxx毫秒”。
SampleTime: 随机取样,最后输出取样结果的分布,例如“99%的调用在xxx毫秒以内,99.99%的调用在xxx毫秒以内”
SingleShotTime: 以上模式都是默认一次 iteration 是 1s,唯有 SingleShotTime 是只运行一次。往往同时把 warmup 次数设为0,用于测试冷启动时的性能。
Iteration Iteration 是 JMH 进行测试的最小单位。在大部分模式下,一次 iteration 代表的是一秒,JMH 会在这一秒内不断调用需要 benchmark 的方法,然后根据模式对其采样,计算吞吐量,计算平均执行时间等。
Warmup
Warmup 是指在实际进行 benchmark 前先进行预热的行为。为什么需要预热?因为 JVM 的 JIT 机制的存在,如果某个函数被调用多次之后,JVM 会尝试将其编译成为机器码从而提高执行速度。为了让 benchmark 的结果更加接近真实情况就需要进行预热。
3.2 注解与选项3.2.1 常用注解说明@BenchmarkMode 对应Mode选项,可用于类或者方法上, 需要注意的是,这个注解的value是一个数组,可以把几种Mode集合在一起执行,还可以设置为Mode.All,即全部执行一遍。
@State 类注解,JMH测试类必须使用@State注解,State定义了一个类实例的生命周期,可以类比Spring Bean的Scope。由于JMH允许多线程同时执行测试,不同的选项含义如下:
Scope.Thread:默认的State,每个测试线程分配一个实例;
Scope.Benchmark:所有测试线程共享一个实例,用于测试有状态实例在多线程共享下的性能;
Scope.Group:每个线程组共享一个实例;
@OutputTimeUnit benchmark 结果所使用的时间单位,可用于类或者方法注解,使用java.util.concurrent.TimeUnit中的标准时间单位。
@Benchmark 方法注解,表示该方法是需要进行 benchmark 的对象。
@Setup 方法注解,会在执行 benchmark 之前被执行,正如其名,主要用于初始化。
@TearDown 方法注解,与@Setup 相对的,会在所有 benchmark 执行结束以后执行,主要用于资源的回收等。
@Param 成员注解,可以用来指定某项参数的多种情况。特别适合用来测试一个函数在不同的参数输入的情况下的性能。@Param注解接收一个String数组,在@setup方法执行前转化为为对应的数据类型。多个@Param注解的成员之间是乘积关系,譬如有两个用@Param注解的字段,第一个有5个值,第二个字段有2个值,那么每个测试方法会跑5*2=10次。
3.2.2 注解使用例子以下示例代码来自JMH官方例子,为了节省篇幅删除了头部的license声明和重复的注释。
@BenchmarkMode和@OutputTimeUnitpublic class JMHSample_02_BenchmarkModes {    @Benchmark    @BenchmarkMode(Mode.Throughput)    @OutputTimeUnit(TimeUnit.SECONDS)    public void measureThroughput() throws InterruptedException {        TimeUnit.MILLISECONDS.sleep(100);    }    /*     * Mode.AverageTime measures the average execution time, and it does it     * in the way similar to Mode.Throughput.     *     * Some might say it is the reciprocal throughput, and it really is.     * There are workloads where measuring times is more convenient though.     */    @Benchmark    @BenchmarkMode(Mode.AverageTime)    @OutputTimeUnit(TimeUnit.MICROSECONDS)    public void measureAvgTime() throws InterruptedException {        TimeUnit.MILLISECONDS.sleep(100);    }    /*     * Mode.SampleTime samples the execution time. With this mode, we are     * still running the method in a time-bound iteration, but instead of     * measuring the total time, we measure the time spent in *some* of     * the benchmark method calls.     *     * This allows us to infer the distributions, percentiles, etc.     *     * JMH also tries to auto-adjust sampling frequency: if the method     * is long enough, you will end up capturing all the samples.     */    @Benchmark    @BenchmarkMode(Mode.SampleTime)    @OutputTimeUnit(TimeUnit.MICROSECONDS)    public void measureSamples() throws InterruptedException {        TimeUnit.MILLISECONDS.sleep(100);    }    /*     * Mode.SingleShotTime measures the single method invocation time. As the Javadoc     * suggests, we do only the single benchmark method invocation. The iteration     * time is meaningless in this mode: as soon as benchmark method stops, the     * iteration is over.     *     * This mode is useful to do cold startup tests, when you specifically     * do not want to call the benchmark method continuously.     */    @Benchmark    @BenchmarkMode(Mode.SingleShotTime)    @OutputTimeUnit(TimeUnit.MICROSECONDS)    public void measureSingleShot() throws InterruptedException {        TimeUnit.MILLISECONDS.sleep(100);    }    /*     * We can also ask for multiple benchmark modes at once. All the tests     * above can be replaced with just a single test like this:     */    @Benchmark    @BenchmarkMode({Mode.Throughput, Mode.AverageTime, Mode.SampleTime, Mode.SingleShotTime})    @OutputTimeUnit(TimeUnit.MICROSECONDS)    public void measureMultiple() throws InterruptedException {        TimeUnit.MILLISECONDS.sleep(100);    }    /*     * Or even...     */    @Benchmark    @BenchmarkMode(Mode.All)    @OutputTimeUnit(TimeUnit.MICROSECONDS)    public void measureAll() throws InterruptedException {        TimeUnit.MILLISECONDS.sleep(100);    }    /*     * ============================== HOW TO RUN THIS TEST: ====================================     *     * You are expected to see the different run modes for the same benchmark.     * Note the units are different, scores are consistent with each other.     *     * You can run this test:     *     * a) Via the command line:     *    $ mvn clean install     *    $ java -jar target/benchmarks.jar JMHSample_02 -wi 5 -i 5 -f 1     *    (we requested 5 warmup/measurement iterations, single fork)     *     * b) Via the Java API:     *    (see the JMH homepage for possible caveats when running from IDE:     *      http://openjdk.java.net/projects/code-tools/jmh/)     */    public static void main(String[] args) throws RunnerException {        Options opt = new OptionsBuilder()                .include(JMHSample_02_BenchmarkModes.class.getSimpleName())                .warmupIterations(5)                .measurementIterations(5)                .forks(1)                .build();        new Runner(opt).run();    }}1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798@Statepublic class JMHSample_03_States {    @State(Scope.Benchmark)    public static class BenchmarkState {        volatile double x = Math.PI;    }    @State(Scope.Thread)    public static class ThreadState {        volatile double x = Math.PI;    }    /*     * Benchmark methods can reference the states, and JMH will inject the     * appropriate states while calling these methods. You can have no states at     * all, or have only one state, or have multiple states referenced. This     * makes building multi-threaded benchmark a breeze.     *     * For this exercise, we have two methods.     */    @Benchmark    public void measureUnshared(ThreadState state) {        // All benchmark threads will call in this method.        //        // However, since ThreadState is the Scope.Thread, each thread        // will have it's own copy of the state, and this benchmark        // will measure unshared case.        state.x++;    }    @Benchmark    public void measureShared(BenchmarkState state) {        // All benchmark threads will call in this method.        //        // Since BenchmarkState is the Scope.Benchmark, all threads        // will share the state instance, and we will end up measuring        // shared case.        state.x++;    }
    public static void main(String[] args) throws RunnerException {        Options opt = new OptionsBuilder()                .include(JMHSample_03_States.class.getSimpleName())                .warmupIterations(5)                .measurementIterations(5)                .threads(4)                .forks(1)                .build();        new Runner(opt).run();    }}1234567891011121314151617181920212223242526272829303132333435363738394041424344454647@Param@BenchmarkMode(Mode.AverageTime)@OutputTimeUnit(TimeUnit.NANOSECONDS)@Warmup(iterations = 5, time = 1, timeUnit = TimeUnit.SECONDS)@Measurement(iterations = 5, time = 1, timeUnit = TimeUnit.SECONDS)@Fork(1)@State(Scope.Benchmark)public class JMHSample_27_Params {    /**     * In many cases, the experiments require walking the configuration space     * for a benchmark. This is needed for additional control, or investigating     * how the workload performance changes with different settings.     */    @Param({"1", "31", "65", "101", "103"})    public int arg;    @Param({"0", "1", "2", "4", "8", "16", "32"})    public int certainty;    @Benchmark    public boolean bench() {        return BigInteger.valueOf(arg).isProbablePrime(certainty);    }    public static void main(String[] args) throws RunnerException {        Options opt = new OptionsBuilder()                .include(JMHSample_27_Params.class.getSimpleName())//                .param("arg", "41", "42") // Use this to selectively constrain/override parameters                .build();        new Runner(opt).run();    }}12345678910111213141516171819202122232425262728293.2.3 常用选项说明include benchmark 所在的类的名字,这里可以使用正则表达式对所有类进行匹配。
fork JVM因为使用了profile-guided optimization而“臭名昭著”,这对于微基准测试来说十分不友好,因为不同测试方法的profile混杂在一起,“互相伤害”彼此的测试结果。对于每个@Benchmark方法使用一个独立的进程可以解决这个问题,这也是JMH的默认选项。注意不要设置为0,设置为n则会启动n个进程执行测试(似乎也没有太大意义)。fork选项也可以通过方法注解以及启动参数来设置。
warmupIterations 预热的迭代次数,默认1秒。
measurementIterations 实际测量的迭代次数,默认1秒。
CompilerControl 可以在@Benchmark注解中指定编译器行为。
CompilerControl.Mode.DONT_INLINE:This method should not be inlined. Useful to measure the method call cost and to evaluate if it worth to increase the inline threshold for the JVM.CompilerControl.Mode.INLINE:Ask the compiler to inline this method. Usually should be used in conjunction with Mode.DONT_INLINE to check pros and cons of inlining.CompilerControl.Mode.EXCLUDE:Do not compile this method – interpret it instead. Useful in holy wars as an argument how good is the JIT.Group 方法注解,可以把多个 benchmark 定义为同一个 group,则它们会被同时执行,譬如用来模拟生产者-消费者读写速度不一致情况下的表现。可以参考如下例子: CounterBenchmark.java
Level 用于控制 @Setup,@TearDown 的调用时机,默认是 Level.Trial。
Trial:每个benchmark方法前后;
Iteration:每个benchmark方法每次迭代前后;
Invocation:每个benchmark方法每次调用前后,谨慎使用,需留意javadoc注释;
Threads 每个fork进程使用多少条线程去执行你的测试方法,默认值是Runtime.getRuntime().availableProcessors()。
四、一些值得注意的地方4.1 无用代码消除(Dead Code Elimination)现代编译器是十分聪明的,它们会对你的代码进行推导分析,判定哪些代码是无用的然后进行去除,这种行为对微基准测试是致命的,它会使你无法准确测试出你的方法性能。JMH本身已经对这种情况做了处理,你只要记住:1.永远不要写void方法;2.在方法结束返回你的计算结果。有时候如果需要返回多于一个结果,可以考虑自行合并计算结果,或者使用JMH提供的BlackHole对象:
/* * This demonstrates Option A: * * Merge multiple results into one and return it. * This is OK when is computation is relatively heavyweight, and merging * the results does not offset the results much. */@Benchmarkpublic double measureRight_1() {    return Math.log(x1) + Math.log(x2);}/* * This demonstrates Option B: * * Use explicit Blackhole objects, and sink the values there. * (Background: Blackhole is just another @State object, bundled with JMH). */@Benchmarkpublic void measureRight_2(Blackhole bh) {    bh.consume(Math.log(x1));    bh.consume(Math.log(x2));}123456789101112131415161718192021224.2 常量折叠(Constant Folding)常量折叠是一种现代编译器优化策略,例如,i = 320 * 200 * 32,多数的现代编译器不会真的产生两个乘法的指令再将结果储存下来,取而代之的,他们会辨识出语句的结构,并在编译时期将数值计算出来(i = 2,048,000)。
在微基准测试中,如果你的计算输入是可预测的,也不是一个@State实例变量,那么很可能会被JIT给优化掉。对此,JMH的建议是:1.永远从@State实例中读取你的方法输入;2.返回你的计算结果;3.或者考虑使用BlackHole对象;
见如下官方例子:
@State(Scope.Thread)@BenchmarkMode(Mode.AverageTime)@OutputTimeUnit(TimeUnit.NANOSECONDS)public class JMHSample_10_ConstantFold {    private double x = Math.PI;    private final double wrongX = Math.PI;    @Benchmark    public double baseline() {        // simply return the value, this is a baseline        return Math.PI;    }    @Benchmark    public double measureWrong_1() {        // This is wrong: the source is predictable, and computation is foldable.        return Math.log(Math.PI);    }    @Benchmark    public double measureWrong_2() {        // This is wrong: the source is predictable, and computation is foldable.        return Math.log(wrongX);    }    @Benchmark    public double measureRight() {        // This is correct: the source is not predictable.        return Math.log(x);    }    public static void main(String[] args) throws RunnerException {        Options opt = new OptionsBuilder()                .include(JMHSample_10_ConstantFold.class.getSimpleName())                .warmupIterations(5)                .measurementIterations(5)                .forks(1)                .build();        new Runner(opt).run();    }}1234567891011121314151617181920212223242526272829303132333435364.3 循环展开(Loop Unwinding)循环展开最常用来降低循环开销,为具有多个功能单元的处理器提供指令级并行。也有利于指令流水线的调度。例如:
for (i = 1; i <= 60; i++)    a[i] = a[i] * b + c;12可以展开成:
for (i = 1; i <= 60; i+=3){  a[i] = a[i] * b + c;  a[i+1] = a[i+1] * b + c;  a[i+2] = a[i+2] * b + c;}123456由于编译器可能会对你的代码进行循环展开,因此JMH建议不要在你的测试方法中写任何循环。如果确实需要执行循环计算,可以结合@BenchmarkMode(Mode.SingleShotTime)和@Measurement(batchSize = N)来达到同样的效果。参考如下例子:
/* * Suppose we want to measure how much it takes to sum two integers: */int x = 1;int y = 2;/* * This is what you do with JMH. */@Benchmark@OperationsPerInvocation(100)public int measureRight() {    return (x + y);}12345678910111213还有这个例子:
@State(Scope.Thread)@Warmup(iterations = 5, time = 1, timeUnit = TimeUnit.SECONDS)@Measurement(iterations = 5, time = 1, timeUnit = TimeUnit.SECONDS)@Fork(3)@BenchmarkMode(Mode.AverageTime)@OutputTimeUnit(TimeUnit.NANOSECONDS)public class JMHSample_34_SafeLooping {    /*     * JMHSample_11_Loops warns about the dangers of using loops in @Benchmark methods.     * Sometimes, however, one needs to traverse through several elements in a dataset.     * This is hard to do without loops, and therefore we need to devise a scheme for     * safe looping.     */    /*     * Suppose we want to measure how much it takes to execute work() with different     * arguments. This mimics a frequent use case when multiple instances with the same     * implementation, but different data, is measured.     */    static final int BASE = 42;    static int work(int x) {        return BASE + x;    }    /*     * Every benchmark requires control. We do a trivial control for our benchmarks     * by checking the benchmark costs are growing linearly with increased task size.     * If it doesn't, then something wrong is happening.     */    @Param({"1", "10", "100", "1000"})    int size;    int[] xs;    @Setup    public void setup() {        xs = new int[size];        for (int c = 0; c < size; c++) {            xs[c] = c;        }    }    /*     * First, the obviously wrong way: "saving" the result into a local variable would not     * work. A sufficiently smart compiler will inline work(), and figure out only the last     * work() call needs to be evaluated. Indeed, if you run it with varying $size, the score     * will stay the same!     */    @Benchmark    public int measureWrong_1() {        int acc = 0;        for (int x : xs) {            acc = work(x);        }        return acc;    }    /*     * Second, another wrong way: "accumulating" the result into a local variable. While     * it would force the computation of each work() method, there are software pipelining     * effects in action, that can merge the operations between two otherwise distinct work()     * bodies. This will obliterate the benchmark setup.     *     * In this example, HotSpot does the unrolled loop, merges the $BASE operands into a single     * addition to $acc, and then does a bunch of very tight stores of $x-s. The final performance     * depends on how much of the loop unrolling happened *and* how much data is available to make     * the large strides.     */    @Benchmark    public int measureWrong_2() {        int acc = 0;        for (int x : xs) {            acc += work(x);        }        return acc;    }    /*     * Now, let's see how to measure these things properly. A very straight-forward way to     * break the merging is to sink each result to Blackhole. This will force runtime to compute     * every work() call in full. (We would normally like to care about several concurrent work()     * computations at once, but the memory effects from Blackhole.consume() prevent those optimization     * on most runtimes).     */    @Benchmark    public void measureRight_1(Blackhole bh) {        for (int x : xs) {            bh.consume(work(x));        }    }    /*     * DANGEROUS AREA, PLEASE READ THE DESCRIPTION BELOW.     *     * Sometimes, the cost of sinking the value into a Blackhole is dominating the nano-benchmark score.     * In these cases, one may try to do a make-shift "sinker" with non-inlineable method. This trick is     * *very* VM-specific, and can only be used if you are verifying the generated code (that's a good     * strategy when dealing with nano-benchmarks anyway).     *     * You SHOULD NOT use this trick in most cases. Apply only where needed.     */    @Benchmark    public void measureRight_2() {        for (int x : xs) {            sink(work(x));        }    }    @CompilerControl(CompilerControl.Mode.DONT_INLINE)    public static void sink(int v) {        // IT IS VERY IMPORTANT TO MATCH THE SIGNATURE TO AVOID AUTOBOXING.        // The method intentionally does nothing.    }
    public static void main(String[] args) throws RunnerException {        Options opt = new OptionsBuilder()                .include(JMHSample_34_SafeLooping.class.getSimpleName())                .warmupIterations(5)                .measurementIterations(5)                .forks(3)                .build();        new Runner(opt).run();    }}123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115五、License声明文中大部分例子来自JMH官方的实例工程:jmh-samples,基于节省篇幅考虑去掉了头部的license声明,现补充如下:
/* * Copyright (c) 2014, Oracle America, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * *  * Redistributions of source code must retain the above copyright notice, *    this list of conditions and the following disclaimer. * *  * Redistributions in binary form must reproduce the above copyright *    notice, this list of conditions and the following disclaimer in the *    documentation and/or other materials provided with the distribution. * *  * Neither the name of Oracle nor the names of its contributors may be used *    to endorse or promote products derived from this software without *    specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */--------------------- 作者:秦沙 来源:CSDN 原文:https://blog.csdn.net/lxbjkben/article/details/79410740 版权声明:本文为博主原创文章,转载请附上博文链接!

posted @ 2018-11-07 23:37  铁鸟2018  阅读(1105)  评论(0编辑  收藏  举报