leveldb Arena源码分析
前言
对于一个高性能的服务器程序来说,内存的使用非常重要。C++提供new/delete来管理内存的申请和释放,但是对于小对象来说,直接使用new/delete代价比较大,要付出额外的空间和时间,性价比不高。另外,也需要避免多次申请和释放引起的内存碎片。一旦碎片到达一定程度,即使剩余内存足够用,但由于缺乏足够的连续的空闲空间,导致内存不够用的假象。
C++ STL为避免内存碎片实现了一个复杂的内存池,leveldb则没有那么复杂,只是实现了一个“一次性”内存池Arena。leveldb并不是所有地方都使用了该内存池,主要是memtable使用,主要是用于临时存放用户的更新数据,由于更小的数据可能较小,所以这里使用内存池就很合适。
原理
为避免小对象的频繁分配,需要减少对new的调用,最简单的做法就是申请大块的内存,多次分给客户。leveldb使用一个vector<char*>来保存所有内存分配记录表,默认每次申请4k的内存,记录下剩余指针和剩余内存字节数。每当有新的申请,如果当前剩余的字节能满足需求,则直接返回给用户,否则,对于超过1k的申请,直接new返回,小于1k的申请,则申请一个新的4k块,从中分配一部分给用户。
但这样存在一个问题当前块剩余部分就浪费了,改进的方法,针对每个block都记录剩余字节数,但如此需要遍历查找合适的block,要付出一定性能的代价。谷歌的做法是浪费就浪费吧。至于释放就需要释放整个内存池来释放所占的内存,这个和leveldb的需求有关,memtable不需要释放单次内存,flush到硬盘后整个memtable销毁。
源码实现
arena.h
#ifndef STORAGE_LEVELDB_UTIL_ARENA_H_ #define STORAGE_LEVELDB_UTIL_ARENA_H_ #include <atomic> #include <cassert> #include <cstddef> #include <cstdint> #include <vector> namespace leveldb { class Arena { public: Arena(); Arena(const Arena&) = delete; Arena& operator=(const Arena&) = delete; ~Arena(); // Return a pointer to a newly allocated memory block of "bytes" bytes. char* Allocate(size_t bytes); // Allocate memory with the normal alignment guarantees provided by malloc. char* AllocateAligned(size_t bytes); // Returns an estimate of the total memory usage of data allocated // by the arena. size_t MemoryUsage() const { return memory_usage_.load(std::memory_order_relaxed); } private: char* AllocateFallback(size_t bytes); char* AllocateNewBlock(size_t block_bytes); char* alloc_ptr_; size_t alloc_bytes_remaining_; std::vector<char*> block_; std::atomic<size_t> memory_usage_; }; inline char* Arena::Allocate(size_t bytes) { assert(bytes > 0); if (bytes <= alloc_bytes_remaining_) { char* result = alloc_ptr_; alloc_ptr_ += bytes; alloc_bytes_remaining_ -= bytes; return result; } return AllocateFallback(bytes); } } #endif
arena.cc
#include "arena.h" namespace leveldb { static const int kBlockSize = 4096; Arena::Arena() : alloc_ptr_(nullptr), alloc_bytes_remaining_(0), memory_usage_(0){} Arena::~Arena() { for (size_t i = 0; i < block_.size(); i++) { delete[] block_[i]; } } char* Arena::AllocateFallback(size_t bytes) { if (bytes > kBlockSize / 4) { char* result = AllocateNewBlock(bytes); return result; } alloc_ptr_ = AllocateNewBlock(kBlockSize); alloc_bytes_remaining_ = kBlockSize; char* result = alloc_ptr_; alloc_ptr_ += bytes; alloc_bytes_remaining_ -= bytes; return result; } char* Arena::AllocateAligned(size_t bytes) { const int align = (sizeof(void*) > 8) ? sizeof(void*) : 8; static_assert((align & (align - 1)) == 0, "Pointer size should be a power of 2"); size_t current_mod = reinterpret_cast<uintptr_t>(alloc_ptr_) & (align - 1); size_t slop = (current_mod == 0 ? 0 : align - current_mod); size_t needed = bytes + slop; char* result; if (needed <= alloc_bytes_remaining_) { result = alloc_ptr_ + slop; alloc_ptr_ += needed; alloc_bytes_remaining_ -= needed; } else { result = AllocateFallback(bytes); } assert((reinterpret_cast<uintptr_t>(result) & (align - 1)) == 0); return result; } char* Arena::AllocateNewBlock(size_t block_bytes) { char* result = new char[block_bytes]; block_.push_back(result); memory_usage_.fetch_add(block_bytes + sizeof(char*), std::memory_order_relaxed); return result; } }
参考博客:https://www.cnblogs.com/shenzhaohai1989/p/3904808.html