如何用快排思想在O(n)内查找第K大元素--王争《数据结构和算法之美》

前言

半年前在极客时间订阅了王争的《数据结构和算法之美》,现在决定认真去看看。看到如何用快排思想在O(n)内查找第K大元素这一章节时发现王争对归并和快排的理解非常透彻,讲得也非常好,所以想记录总结一下。文章内容主要分析归并排序和快速排序原理,并根据它们共同的分治思想,引出如何在 O(n) 的时间复杂度内查找一个无序数组中的第 K 大元素?

归并排序原理

核心思想:将数组从中间分成前后两部分,然后对前后两部分分别进行排序,再将排序好的两个部分有序合并在一起,这样整个数组有序。

归并排序使用的就是分治思想。分治,顾名思义,就是分而治之,讲一个大的问题分解成小的问题来解决,小的问题解决了大的问题也就解决了。分治算法一般都是用递归来实现,分治是一种解决问题的处理思想,递归是一种编程技巧,两者并不冲突。以下重点讨论如何用递归代码来实现归并排序。下面是归并排序的递推公式。

递推公式:
merge_sort(p...r) = merge(merge_sort(p...q), merge_sort(q+1...r))

终止条件:
p >= r 不用继续分解

具体解释如下:

merge_sort(p...r) 表示给下标从 p 到 r 之间的数组排序。将这个排序问题转化为两个子问题 merge_sort(p...q) 和merge_sort(q+1...r),其中 q 为 p 和 r 的中间位置,即(p+r)/2。当前后两个子数组排好序之后,再将它们合并在一起,这样下标从 p 到 r 之间的数据也就排序好了。

C语言代码实现:

// 归并排序算法, A 是数组,n 表示数组大小
void mergeSort(int *a, int n){
    mergeSortC(a, 0, n-1);
}

// 递归调用函数
void mergeSortC(int *a, int left, int right){
    // 递归终止条件
    if (left >= right)
        return;

    int mid = left + (right - left)/2;
    mergeSortC(a, left, mid);
    mergeSortC(a, mid+1, right);
    merge(a, left, mid, right);
}

// 合并函数
void merge(int *a, int left, int mid, int right){
    int i = left, j = mid+1, k = 0;
    int *tmp = new int[right-left+1];  // 申请一个大小为right-left+1临时数组
    while (i <= mid && j <= right){
        if(a[i] < a[j])
            tmp[k++] = a[i++];
        else
            tmp[k++] = a[j++];
    }

    while (i <= mid)
        tmp[k++] = a[i++];

    while (j <= right)
        tmp[k++] = a[j++];

    for (i=0; i <= right-left; i++){
        a[left+i] = tmp[i];
    }

    delete[] tmp;
}

归并排序的时间复杂度任何情况下都是 O(nlogn),看起来非常优秀(快速排序最坏情况系时间复杂度也是 O(n2))。但归并排序并没有像快排那样应用广泛,因为它有一个致命的“弱点”,那就是归并排序不是原地排序算法。原因是合并函数需要借助额外的存储空间,空间复杂度为 O(n)。

C++实现:

void merge(std::vector<int>& a, int left, int mid, int right) {
    int i = left;
    int j = mid + 1;
    int k = 0;
    std::vector<int> v(right - left + 1);
    while (i <= mid && j <= right) {
       v[k++] = a[i] < a[j] ? a[i++] : a[j++];
    }
    while (i <= mid) {
        v[k++] = a[i++];
    }
    while (j <= right) {
        v[k++] = a[j++];
    }
    for (i = 0; i < v.size(); ++i) {
        a[left + i] = v[i];
    }
}

void mergeSort(std::vector<int>& a, int left, int right) {
    if (left >= right) return;
    int mid = left + (right - left) / 2;
    mergeSort(a, left, mid);
    mergeSort(a, mid+1, right);
    merge(a, left, mid, right);
}

void mergeSort(std::vector<int>& a) {
    mergeSort(a, 0, a.size() - 1);
}

快速排序原理

核心思想:选取一个基准元素(pivot,比 pivot 小的放到左边,比 pivot 大的放到右边,对 pivot 左右两边的序列递归进行以上操作。

快速排序也是根据分治、递归的处理思想实现。地推公式如下:

递推公式:
quick_sort(p…r) = quick_sort(p…q-1) + quick_sort(q+1...r)

终止条件:
p >= r

C语言代码实现:

// 快速排序算法, A 是数组,n 表示数组大小
void quickSort(int *a, int n){
    quickSortC(a, 0, n-1);
}

// 快排递归函数
void quickSortC(int *a, int left, int right){
    // 递归终止条件
    if (left >= right)
        return;
    // 获取分区点
    int pivot = partition(a, left, right);
    quickSortC(a, left, pivot-1);
    quickSortC(a, pivot+1, right);
}

/* 原地分区函数,非常巧妙,以a[right]为基准,运算结果
 * 是i前面的元素都小于pivot,i后面的元素大于等于pivot */
int partition(int *a, int left, int right){
    int pivot = a[right];
    int i = left;
    for (int j=left; j < right; j++){
        if (a[j] < pivot){
            swap(a[i], a[j]);
            i++;
        }
    }
    swap(a[i], a[right]);
    return i;
}

 快速排序的算法的平均时间复杂度是 O(nlogn),最坏时间复杂度是 O(n2),空间复杂度是O(1)。快速排序不是一个稳定的排序算法。

C++ 实现:

int partition(std::vector<int>& a, int left, int right) {
    using std::swap;
    int pivot = a[right];
    int j = left;
    for (int i = left; i < right; ++i) {
        if (a[i] < pivot)
            swap(a[i], a[j++]);
    }
    swap(a[right], a[j]);
    return j;
}

void quickSort(std::vector<int>& a, int left, int right) {
    if (left >= right) return;
    int pivot = partition(a, left, right);
    quickSort(a, left, pivot-1);
    quickSort(a, pivot+1, right);
}

void quickSort(std::vector<int>& a) {
    quickSort(a, 0, a.size() - 1);
}

归并排序和快速排序的区别

快排和归并用的都是分治思想,递归公式和代码都非常相似,但它们的区别在哪里呢?

 

 由上图可以发现,归并排序的处理过程是由下到上的,先处理子问题,然后合并。而快排正好相反,其处理过程是由上而下的,先分区,然后处理子问题。归并排序虽然是稳定的,时间复杂度是 O(nlogn)的排序算法,但它是非原地排序算法。快排通过设计巧妙的原地分区函数,可以实现原地排序,解决归并排序占用太多内存的问题。

第 K 大元素

快排核心思想就是分治和分区,我们可以利用分区的思想来求解开篇问题: O(n)时间复杂度内求无序数组中的第 K 大元素。

 C语言代码实现:

// top K 算法, A 是数组,n 表示数组大小,k 表示第 k 大
int getTopK(int *a, int n, int k){
    if (a == nullptr || n < k)
        return -1;
    
    return topK(a, 0, n-1, k);
}

int topK(int *a, int left, int right, int k){
    int p = partition(a, left, right);
    if (k == p+1)
        return a[p];

    if(k < p+1)
        return topK(a, left, p-1, k);
    else
        return topK(a, p+1, right, k);
}

/* 原地分区函数,非常巧妙,以a[right]为基准,运算结果
 * 是i前面的元素都大于pivot,i后面的元素小于于等于pivot */
int partition(int *a, int left, int right){
    int pivot = a[right];
    int i = left;
    for (int j=left; j < right; j++){
        if (a[j] > pivot){
            swap(a[i], a[j]);
            i++;
        }
    }
    swap(a[i], a[right]);
    return i;
}

LeetCode 215 C++实现:

class Solution {
public:
    int partition(vector<int>& nums, int left, int right) {
        using std::swap;
        int pivot = nums[right];
        int j = left;
        for (int i = left; i < right; ++i) {
            if (nums[i] > pivot) 
                swap(nums[i], nums[j++]);
        }
        swap(nums[right], nums[j]);
        return j;
    }
    int getTopK(vector<int>& nums, int left, int right, int k) {
        if (left >= right) return nums[left];
        int pivot = partition(nums, left, right);
        if (pivot + 1 == k) 
            return nums[pivot];
        return (pivot + 1 < k) ? getTopK(nums, pivot+1, right, k) 
                               : getTopK(nums, left, pivot-1, k);
    }
    int findKthLargest(vector<int>& nums, int k) {
        return getTopK(nums, 0, nums.size() - 1, k);
    }
};
posted @ 2019-07-10 15:04  evenleo  阅读(1520)  评论(0编辑  收藏  举报