[BZOJ 1419] Red is good
[题目链接]
https://www.lydsy.com/JudgeOnline/problem.php?id=1419
[算法]
概率DP
用Fi,j表示还剩下i张红卡 , j张黑卡 , 期望获得的最大价值
时间复杂度 : O(N ^ 2)
滚动数组 , 将空间复杂度降至O(N)
[代码]
#include<bits/stdc++.h> using namespace std; #define MAXN 5010 #define RG register int R , B; double dp[2][MAXN]; template <typename T> inline void chkmax(T &x,T y) { x = max(x,y); } template <typename T> inline void chkmin(T &x,T y) { x = min(x,y); } template <typename T> inline void read(T &x) { T f = 1; x = 0; char c = getchar(); for (; !isdigit(c); c = getchar()) if (c == '-') f = -f; for (; isdigit(c); c = getchar()) x = (x << 3) + (x << 1) + c - '0'; x *= f; } int main() { read(R); read(B); dp[0][0] = 0; for (RG int i = 0; i <= R; i++) { for (RG int j = 0; j <= B; j++) { if (i + j == 0) continue; double p = 1.0 * i / (i + j); if (i == 0) dp[i & 1][j] = max(0.0 , (dp[i & 1][j - 1] - 1) * (1 - p)); else if (j == 0) dp[i & 1][j] = max(0.0 , (dp[(i - 1) & 1][j] + 1) * p); else dp[i & 1][j] = max(0.0 , 1.0 * (dp[(i - 1) & 1][j] + 1) * p + 1.0 * (dp[i & 1][j - 1] - 1) * (1 - p)); } } dp[R & 1][B] *= (int)1e6; dp[R & 1][B] = floor(dp[R & 1][B]); dp[R & 1][B] /= (int)1e6; printf("%.6lf\n" , dp[R & 1][B]); return 0; }