【POJ 3580】 SuperMemo

【题目链接】

           点击打开链接

【算法】

          本题也是Splay区间操作的模板题,不过要比BZOJ 3223要稍微复杂一些,做完此题后,我终于对Splay有了更深入的理解,有“拨开云雾见青天”的感觉

            本题还是有许多细节的,笔者花了5h才通过了此题

【代码】

          

#include <algorithm>
#include <bitset>
#include <cctype>
#include <cerrno>
#include <clocale>
#include <cmath>
#include <complex>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <deque>
#include <exception>
#include <fstream>
#include <functional>
#include <limits>
#include <list>
#include <map>
#include <iomanip>
#include <ios>
#include <iosfwd>
#include <iostream>
#include <istream>
#include <ostream>
#include <queue>
#include <set>
#include <sstream>
#include <stdexcept>
#include <streambuf>
#include <string>
#include <utility>
#include <vector>
#include <cwchar>
#include <cwctype>
#include <stack>
#include <limits.h>
using namespace std;
#define MAXN 100000
const int INF = 2e9;

int i,N,M,d,P,x,y,t;
int a[MAXN+10];
string opt;

template <typename T> inline void read(T &x) {
        int f=1; x=0;
        char c = getchar();
        for (; !isdigit(c); c = getchar()) { if (c == '-') f = -f; }
        for (; isdigit(c); c = getchar()) x = x * 10 + c - '0';
        x *= f;
}

template <typename T> inline void write(T x) {
    if (x < 0) { putchar('-'); x = -x; }
    if (x > 9) write(x/10);
    putchar(x%10+'0');
}

template <typename T> inline void writeln(T x) {
    write(x);
    puts("");
}

struct Splay {
        int root,total;
        struct Node {
                int fa,son[2],size,add,Min,val;
                bool rev;            
        } Tree[MAXN*2+10];
        inline bool get(int x) {
                return Tree[Tree[x].fa].son[1] == x;
        }
        inline void build(int index,int l,int r) {
                int mid = (l + r) >> 1;
                Tree[index].size = 1;
                Tree[index].add = Tree[index].rev = 0;
                Tree[index].val = Tree[index].Min = a[mid];    
                if (l == r) return;
                if (l < mid) {
                        ++total;
                        Tree[index].son[0] = total;
                        Tree[total].fa = index;
                        build(total,l,mid-1);
                        Tree[index].size += Tree[Tree[index].son[0]].size;
                        Tree[index].Min = min(Tree[index].Min,Tree[Tree[index].son[0]].Min);
                }
                if (mid < r) {
                        ++total;
                        Tree[index].son[1] = total;
                        Tree[total].fa = index;
                        build(total,mid+1,r);
                        Tree[index].size += Tree[Tree[index].son[1]].size;
                        Tree[index].Min = min(Tree[index].Min,Tree[Tree[index].son[1]].Min);
                }
        }
        inline void new_node(int index,int x,int f) {
                Tree[index].rev = 0;
                Tree[index].size = 1;
                Tree[index].val = Tree[index].Min = x;
                Tree[index].add = 0;
                Tree[index].fa = f;
                Tree[index].son[0] = Tree[index].son[1] = 0;
        }
        inline int query_pos(int x) {
                int index = root;
                while (true) {
                        pushdown(index);
                        if (x > Tree[Tree[index].son[0]].size) {
                                x -= Tree[Tree[index].son[0]].size;
                                if (x == 1) return index;
                                --x;
                                index = Tree[index].son[1];
                        } else index = Tree[index].son[0];
                }        
        }
        inline void pushdown(int index) {
                if (Tree[index].rev) {
                        swap(Tree[index].son[0],Tree[index].son[1]);
                        Tree[Tree[index].son[0]].rev ^= 1;
                        Tree[Tree[index].son[1]].rev ^= 1;
                        Tree[index].rev = 0;
                }
                if (Tree[index].add) {
                        Tree[Tree[index].son[0]].val += Tree[index].add;
                        Tree[Tree[index].son[1]].val += Tree[index].add;
                        Tree[Tree[index].son[0]].add += Tree[index].add;
                        Tree[Tree[index].son[1]].add += Tree[index].add;
                        Tree[Tree[index].son[0]].Min += Tree[index].add;
                        Tree[Tree[index].son[1]].Min += Tree[index].add;
                        Tree[index].add = 0;
                }
        }
        inline void update(int index) {
                Tree[index].size = Tree[Tree[index].son[0]].size + Tree[Tree[index].son[1]].size + 1;
                Tree[index].Min = Tree[index].val;
                if (Tree[index].son[0]) Tree[index].Min = min(Tree[index].Min,Tree[Tree[index].son[0]].Min);
                if (Tree[index].son[1]) Tree[index].Min = min(Tree[index].Min,Tree[Tree[index].son[1]].Min);
        }
        inline void splay(int x,int pos) {
                int f;
                for (f = Tree[x].fa; (f = Tree[x].fa) != pos; rotate(x)) {
                        if (Tree[f].fa != pos) 
                                rotate(get(f) == get(x) ? (f) : (x));
                }
                if (!pos) root = x;
        }
        inline void rotate(int x) {
                int f = Tree[x].fa,g = Tree[f].fa,
                tmpx = get(x),tmpf = get(f);
                pushdown(f); pushdown(x);
                if (!f) return;
                Tree[f].son[tmpx] = Tree[x].son[tmpx^1];
                if (Tree[x].son[tmpx^1]) Tree[Tree[x].son[tmpx^1]].fa = f;
                Tree[x].son[tmpx^1] = f;
                Tree[f].fa = x;
                Tree[x].fa = g;
                if (g) Tree[g].son[tmpf] = x;
                update(f);
                update(x);
        }
        inline void Insert(int p,int val) {
                int x = query_pos(p),
                        y = query_pos(p+1);
                splay(x,0); splay(y,root);
                new_node(++total,val,Tree[root].son[1]);
                Tree[Tree[root].son[1]].son[0] = total;
                update(Tree[root].son[1]);
                update(root);    
        }    
        inline void erase(int p) {
                int x = query_pos(p-1),
                        y = query_pos(p+1);
                splay(x,0); splay(y,root);
                Tree[Tree[root].son[1]].son[0] = 0;
                update(Tree[root].son[1]);
                update(root);
        }
        inline void add(int l,int r,int v) {
                int x = query_pos(l-1),
                        y = query_pos(r+1);
                splay(x,0); splay(y,root);
                Tree[Tree[Tree[root].son[1]].son[0]].val += v;
                Tree[Tree[Tree[root].son[1]].son[0]].add += v;
                Tree[Tree[Tree[root].son[1]].son[0]].Min += v;
                update(Tree[root].son[1]);
                update(root);
        }
        inline void reverse(int l,int r) {
                int x = query_pos(l-1),
                        y = query_pos(r+1);
                splay(x,0); splay(y,root);
                Tree[Tree[Tree[root].son[1]].son[0]].rev ^= 1;
        }
        inline int query_min(int l,int r) {
                int x = query_pos(l-1),
                        y = query_pos(r+1);
                splay(x,0); splay(y,root);
                return Tree[Tree[Tree[root].son[1]].son[0]].Min;
        }
        inline void revolve(int l,int r,int t) {
                int x = query_pos(r-t),
                        y = query_pos(r+1);
                splay(x,0); splay(y,root);
                int tmp = Tree[Tree[root].son[1]].son[0];
                Tree[Tree[root].son[1]].son[0] = 0;
                update(Tree[root].son[1]);
                update(root);
                x = query_pos(l-1); 
                y = query_pos(l);
                splay(x,0); splay(y,root);
                Tree[Tree[root].son[1]].son[0] = tmp;
                Tree[tmp].fa = Tree[root].son[1];
                update(Tree[root].son[1]);
                update(root);
        }
} T;

int main() {
        
        read(N);
        
        T.root = T.total = 1;
        for (i = 2; i <= N + 1; i++) read(a[i]);
        a[1] = a[N+2] = INF;
        T.build(1,1,N+2);
        
        read(M);
        while (M--) {
                cin >> opt;
                if (opt[0] == 'A') {
                        read(x); read(y); read(d); 
                        if (x > y) swap(x,y);
                        T.add(x+1,y+1,d);
                } else if (opt[0] == 'R' && opt[1] == 'E' && opt[2] == 'V' && opt[3] == 'E'){
                        read(x); read(y);
                        if (x > y) swap(x,y);
                        T.reverse(x+1,y+1);                    
                } else if (opt[0] == 'R' && opt[1] == 'E' && opt[2] == 'V' && opt[3] == 'O') {
                        read(x); read(y); read(t);
                        if (x > y) swap(x,y);
                        t = (t % (y - x + 1) + y - x + 1) % (y - x + 1); 
                        if (!t) continue;
                        T.revolve(x+1,y+1,t);
                } else if (opt[0] == 'I') {
                        read(x); read(P);
                        T.Insert(x+1,P);
                } else if (opt[0] == 'D') {
                        read(x); 
                        T.erase(x+1);
                } else if (opt[0] == 'M') {
                        read(x); read(y);
                        if (x > y) swap(x,y);
                        writeln(T.query_min(x+1,y+1));
                }
        }
        
        return 0;
    
}


          

 

posted @ 2018-03-04 20:36  evenbao  阅读(199)  评论(0编辑  收藏  举报