【BZOJ 2818】 GCD

【题目链接】

          点击打开链接

【算法】

          线性筛出不大于N的所有素数,枚举gcd(x,y)(设为p),问题转化为求(x,y)=p的个数
          设x=x'p, y=y'p,那么有(x,y)=1且1≤x,y≤N/p

          转化为求(x,y)=1且1≤x,y≤n的个数

          求(x,y)=1且1≤x,y≤N的个数:

          若x≥y,对于x=1..n,有ϕ(x)个y满足(x,y)=1
          若x≤y,对于y=1..n,有ϕ(y)个x满足(x,y)=1
          若x=y,只有一种情况:(x=1, y=1)
          所以答案为2(ϕ(1)+...+ϕ(n))-1

          线性筛筛出欧拉函数、预处理前缀和即可

【代码】

           

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll MAXN = 1e7;

ll i,N,tot,ans;
ll sum[MAXN+10];
int prime[MAXN+10],phi[MAXN+10];

template <typename T> inline void read(T &x) {
        ll f = 1; x = 0;
        char c = getchar();
        for (; !isdigit(c); c = getchar()) { if (c == '-') f = -f; }
        for (; isdigit(c); c = getchar()) x = (x << 3) + (x << 1) + c - '0';
        x *= f;
}

template <typename T> inline void write(T x) {
    if (x < 0) { putchar('-'); x = -x; }
    if (x > 9) write(x/10);
    putchar(x%10+'0');
}

template <typename T> inline void writeln(T x) {
    write(x);
    puts("");
}

inline void sieve(ll n) {
        ll i,j,tmp;
        static ll f[MAXN+10];
        phi[1] = 1;
        for (i = 2; i <= n; i++) {
                if (!f[i]) {
                        prime[++tot] = f[i] = i;
                        phi[i] = i - 1;
                }
                for (j = 1; j <= tot; j++) {
                        tmp = i * prime[j];
                        if (tmp > n) break;
                        f[tmp] = prime[j];
                        phi[tmp] = (prime[j] - (prime[j] < f[i])) * phi[i];
                        if (f[i] == prime[j]) break;
                }
        }    
}

int main() {
        
        read(N);
        sieve(N);
        for (i = 1; i <= N; i++) sum[i] = sum[i-1] + phi[i];
        for (i = 1; i <= tot; i++) ans = ans + 2 * sum[N/prime[i]] - 1;
        writeln(ans);
        
        return 0;
    
}

 

posted @ 2018-03-30 19:08  evenbao  阅读(106)  评论(0编辑  收藏  举报